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Abstract 

While COVID-19 is best known as a respiratory infection, SARS-CoV-2 causes systemic 

disease manifestations including coagulopathies. Both dysregulated extracellular matrix 

remodeling pathways and circulating coagulation proteins are hallmarks of severe COVID-19 

and often continue after the resolution of acute infection. Coagulation proteins have proven 

effective as biomarkers for severe disease and anti-coagulants are a mainstay of COVID-19 

therapeutics in hospitalized patients. While much knowledge has been gained about the role of 

clotting pathway activation in COVID-19, much remains to be elucidated in this complex network 

of signaling pathways. 

 

  

                  



Introduction 

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) was first detected in 

late 2019 in a cluster of pneumonia patients in Wuhan, China (1). While some patients have had 

asymptomatic infections, most present with a range of symptoms from mild to lethal disease (2). 

COVID-19, the disease caused by SARS-CoV-2 infection, most commonly causes respiratory 

symptoms with patients experiencing fever, shortness of breath, hypoxia, cough and in severe 

cases respiratory failure, coagulopathies and multiple organ failure leading to death (3-6). While 

the overall case fatality rate of COVID-19 is relatively low (~1%), the extraordinarily rapid spread 

of this new disease has resulted in overwhelmed medical facilities and exhausted medical 

providers (7). Of increasingly recognized importance, COVID-19 patients do not all return to 

their previous baseline health status with ‘long COVID’ patients continuing to experience muscle 

weakness, shortness of breath, mental fogginess, and other symptoms 9+ months after their 

initial infection (8). While novel SARS-CoV-2 vaccines and other therapeutics are expected to 

end the pandemic, the impact of COVID-19 will extend beyond this primary period of infection. 

Infection  

 SARS-CoV-2 utilizes the ACE2 receptor found on human epithelial cells in the airways 

as well as type II pneumocytes in the lung (9).  SARS-CoV-2 also has a broad affinity for ACE2 

of other animal species and has been linked to progenitor CoV strains found in bats (10). 

Although virus tropism is predominantly limited to ACE2 expressing respiratory epithelial cells, 

there has been evidence of virus replication outside of the respiratory tract including shedding of 

viral RNA in the feces, and occasional positive virus detection in the brain, heart, kidney and 

other organs (11-13). Both in vitro and ex vivo infection of non-epithelial cells has been 

demonstrated, although most in vivo data has been for viral RNA and true in vivo replication 

data has been limited to date. While infection of other tissues has been reported, airway and 

lung ciliated epithelial cells represent the primary site of SARS-CoV-2 replication. SARS-CoV-2, 

like SARS-CoV and influenza, preferentially infects type II pneumocytes versus type I C  While 

                  



type I pneumocytes make up most of the alveolar surface and are responsible for gas 

exchange, type II cells have a thick cuboidal shape and produce pulmonary surfactants 

necessary for lubricating the lung, thus reducing surface tension to allow for respiration (14). 

Importantly, surfactant expression dramatically decreases following SARS-CoV-2 infection 

(15)(16). In addition, type II cells are the progenitor cells of the alveoli and differentiate into type 

I cells.  Therefore, the loss of type II cells due to SARS-CoV-2 infection has a lasting impact and 

leaves the lung without a direct means to restore the alveoli.  While type I pneumocytes can 

revert to type II cells, in vitro experimental systems suggest that the process can take weeks to 

occur (17).  This fact may contribute to the long recovery time required for COVID-19 patients.   

Cytokine Storm and Inflammation  

 Following SARS-CoV-2 infection, the host immune response produces a robust and 

large cytokine storm characterized by inflammatory mediators (Fig. 1B).  Responding to 

damage at the infection site, local alveolar macrophages and infiltrating neutrophils produce a 

cascade of inflammatory cytokines including IL-1, IL-6, and TNF (17). Type I interferons, 

drivers of the classical antiviral response, are produced at lower levels and later timepoints than 

observed in influenza infection (18, 19). Interferon auto-antibodies have also been detected in 

patients with severe COVID-19, but not those with milder disease (20).  Mutations in interferon 

signaling pathways appear to be enriched in severe COVID-19 (21). High levels of C-reactive 

protein, complement activation, and lactate dehydrogenase all predict severe disease and 

contribute to tissue damage (22).  However, absent a strong and productive type I interferon 

response, these cytokines and inflammatory mediators have limited impact on SARS-CoV-2 

replication and cause diffuse alveolar damage (DAD) (23-25). While many coronavirus proteins 

have interferon antagonist abilities (26), the CoV E protein has been showed to exacerbate the 

inflammatory cascade via NFkB (27) in mouse models. Notably, other host conditions including 

age, obesity, and diabetes have been associated with increased inflammation and subsequent 

                  



disease (28). Lacking antiviral effect, the inflammatory cascade plays a detrimental role during 

COVID-19 infection, exacerbating lung damage and disease.  Several COVID9 treatment 

approaches have focused on disrupting this inflammatory cascade including drugs like 

dexamethasone, IL-1 and IL-6 antagonists with modest effect (29).    

Wound Healing 

The lung epithelium is part of the larger epithelial barrier that protects our tissues from the 

external environment, and it can be damaged chemical injury or infectious agents such as 

SARS-CoV-2. Wound healing or tissue repair is the complex processes by which injured cells 

are identified, removed, and eventually replaced with new, healthy tissue. While healthy lung 

cells have little cell turnover, the lung epithelium is capable of impressive regeneration after 

injury (30). Following injury, epithelial cells can de-differentiate to replicate and replace 

specialized cells such as type I and type II pneumocytes and secretory cells. Recent COVID-19 

autopsy reports have noted a high percentage of proliferating AT2 cells (31), indicating that 

epithelial cell regeneration occurs after SARS-CoV-2 induced lung injury. Crosstalk between 

epithelial cells and immune cells is critical for this process with activated neutrophils and 

macrophages producing TGF-b and other chemokines that promote epithelial cell migration to 

the site of tissue injury. Immune cells also clear apoptotic debris from the site of injury and 

release growth factors like EGF, VEGF and IGF that are important for the tissue regeneration 

process. Little human data on growth factor expression in COVID-19 patients is available 

(32)(33); however, previous work using a mouse model of SARS-CoV infection demonstrated 

that overactive EGFR signaling leads to enhanced lung disease pulmonary fibrosis (34), 

indicating that an appropriate wound healing response is important for resolution of coronavirus-

induced lung disease.  

Coagulation and Extracellular Matrix Remodeling Pathways 

 In response to infection and inflammation-induced damage, the host must take actions to 

maintain respiratory function through activation of extracellular matrix remodeling and 

                  



coagulation pathways (35). Loss of pneumocytes and diffuse alveolar damage caused by 

inflammation raises the risk of vascular leakage, fluid accumulation (edema), and hemorrhage in 

the alveolar spaces, thus preventing oxygen exchange (36) (Fig. 1C). This tissue damage leads 

to cytokine production, stimulating increased expression of tissue factor on endothelial cells and 

exposure of TF to activate the coagulation pathway,leading to the cleavage of prothrombin to 

thrombin (37, 38). Interestingly, while tissue factor protein levels are increased in COVID-19 

patients, the transcripts are not elevated (39, 40), indicating that regulation of SARS-CoV-2 

induced thrombotic events is complex. Thrombin subsequently cleaves fibrinogen into fibrin 

(41), a major component of clots. Fibrin is incorporated with collagen into hyaline membranes to 

seal the alveoli from fluid accumulation (42). However, these sealing processes thicken the 

alveolar walls, limit oxygen exchange, and may lead to pulmonary fibrosis, endangering 

respiratory function (43).  

Additionally, epithelial damage, production of pro-fibrotic cytokines, and chemokines 

such as TGF and MCP-1 stimulate collagen and fibronectin production leading to a pro-fibrotic 

state (44, 45). This fibrotic lung stage also stimulates the fibrinolytic pathway, a process that 

breaks down fibrinous deposits through release of uPa and tPA (46) (Fig. 1D).  UPa and tPA 

activate plasminogen into plasmin which targets fibrin for breakdown (47). The activity of tPA 

and uPa is regulated by plasminogen activator inhibitor-1 (PAI-1),(46) and alpha 2-antiplasmin. 

Plasmin itself is regulated by several serine protease inhibitors including a2-antiplasmin and 

there are extensive interactions between the complement and coagulation proteolytic pathways 

(35, 48) (Fig. 1E). Together, the fibrinolytic and coagulation pathways govern a delicate balance 

between hemorrhage/edema and fibrosis in order to maintain lung respiratory function. Once 

this axis is disrupted by coronavirus-induced acute respiratory distress (ARDS), patients are at 

high risk of respiratory failure from either pulmonary fibrosis or edema and DAD.  

 During SARS-CoV-2 infection, the balance of the coagulation signaling, including the 

fibrinolytic pathway can be disrupted in either direction leading to adverse outcomes. COVID-19 

                  



patients have been reported to have high levels of PAI-1 and D-dimers in their blood (49, 50), 

consistent with the microthrombi observed in COVID-19 patient autopsies. Confoundingly, intra-

alveolar hemorrhage has also been observed in COVID-19 lungs and elevated levels of pro-

fibrinolytic uPA and tPA have been associated with reduced respiratory function and more 

severe disease (37)). Excessive levels of uPA and tPA can lead to breakdown of fibrin before 

damaged areas have been sufficiently repaired (Fig. 1D). The results can be fluid accumulation 

in the alveolar spaces that disrupts oxygen exchange. However, during SARS-CoV-2 infection, 

coagulation has more often been identified as a persistent issue and a major factor contributing 

to mortality (3). An increase in PAI-1 prevents the breakdown of fibrin by uPa and tPA, leaving a 

thickening of the alveolar walls that reduces respiratory function and makes it more difficult to 

breath (49) (Fig. 1E). The pro-coagulation cascade also has an impact beyond the lung with the 

formation of microvascular clots in other organs and in the circulatory system (43) (Fig. 1F).  In 

addition, PAI-1 levels are increased in patients who are elderly or have hypertension, obesity, 

diabetes, and cardiovascular disease, consistent with increased susceptibility to COVID in these 

populations (51). Even after resolution of infection, the lung can maintain fibrin and other 

scarring from the induced damage (52) (Fig. 1G). Overall, both sides of the fibrinolytic/ 

coagulation pathway are critical to the SARS-CoV-2 response. 

While experimental data is limited for SARS-CoV-2, disruption of uPa signaling had 

significant impact on susceptibility to the original SARS-CoV in vivo (53).  Mice deficient in PAI-1 

had increased weight loss and mortality following challenge with SARS-CoV (54).  The absence 

of PAI-1 resulted in an increase in ARDS related gene signatures and extensive hemorrhage in 

the lung.  Notably, the loss of PAI-1 had no significant impact on viral load.  Conversely, mice 

deficient in tPA (PLAT) were also more susceptible to lethal SARS-CoV challenge (54).  tPA-/- 

mice had increased mortality compared to control animals following SARS-CoV challenge.  

While the tPA KO mice trended to less overall hemorrhage, the presence of exudates and 

increased lethality indicate the delicate balance required to recover from infection.  It is 

                  



anticipated that the fibrinolytic signaling  pathway governs similar processes following SARS-

CoV-2 infection. 

Monitoring and Targeting COVID induced Coagulation 

Given the link to severe disease and mortality (55), activated pathways associated with 

fibrinolysis and coagulation have been used as a biomarkers for determining COVID-19 

intervention strategies. Retrospective studies have determined that lethal SARS-CoV-2 cases 

had higher D-dimer and fibrin degradation products in their blood (55, 56).  These patients also 

had longer prothrombin time and met criteria consistent with disseminated intravascular 

coagulopathy (37).  Similarly, low platelet counts and prolonged activated partial thromboplastin 

time were associated with more severe disease (57).   

Finally, lupus anticoagulant antibodies have also been identified in a subset of patients 

(58). Together, the results suggest that monitoring coagulation metrics can predict disease 

severity and dictate intervention strategies (29). Similarly, improvement in these coagulation 

metrics may signal appropriate waning of aggressive treatment approaches. 

 Prophylactic targeting of the coagulation pathways is now the routine treatment 

approach for hospitalized COVID-19 patients (59).  While not employed early during the 

outbreak, the combination of excess thrombin production, fibrinolysis shutdown, and evidence of 

micro thrombotic occlusions demonstrated the need to control coagulation pathways (60).  The 

standard treatment utilizes low-molecular weight heparin (LMWH) which inhibits heparinase 

activity, neutralizes cytokine storm, and interferes with leukocyte trafficking (61, 62).  An 

alternative approach utilized inhalation of plasminogen to improve lung lesion and hypoxemia 

(63).  To counteract fibrin accumulation, tPA treatment and drugs that target PAI-1 have been 

attempted to improve outcomes (49, 63). Together, these approaches to disrupt an exuberant 

coagulation response has produced improved outcome in hospitalized patients. 

 Despite being the standard of care, targeting the coagulation pathways offers a 

mitigation rather than preventive response.  The disruption of the coagulation factors does not 

                  



resolve the underlying inflammation and lung damage that initiated the response. Instead, 

treatments that disrupt the damage cascade may have the most significant impact on 

coagulation pathways activation.  For example, antiviral drugs like remdesivir and EIDD-2801 

and monoclonal antibodies target viral replication with best effect at early times points post 

infection (64, 65); remdesivir has also been shown to reduce inflammatory responses and may 

reduce overall disease by diminishing damage (66).  Similarly, treatments that disrupt the 

inflammatory cascade may also change downstream coagulation activation.  Anakinra and 

tocilizumab, drugs that target IL1 and IL6 respectively, have been utilized to treat COVID-19 

patients (67). These inflammation pathways have also been shown to activate coagulation 

pathways and treatments that target these inflammation cascades may reduce damage 

stimulating coagulation responses.  Broad immune suppression drugs like dexamethosome may 

also produce the same results (29). Further research into coagulation triggers and cascade 

activation in COVID-19 patients will help highlight areas for targeted therapeutics. Overall, 

efforts to prevent inflammation related damage potentially have more utility than targeting 

coagulation pathways in treating COVID-19. 

Conclusion 

  As SARS-CoV-2 has spread around the world, the connections between viral infection, 

inflammation, and the coagulation cascade have been further illuminated. While the emergent 

SARS-CoV-2 causes significant disease and death, damage from viral replication appears 

secondary to exuberant host responses.  In an effort to maintain respiratory function, the 

delicate balance between hemorrhage and fibrosis in the lung is at the nexus of COVID-19 

disease.  Focusing on the coagulation and fibrinolytic pathways provides a means to evaluate 

the severity of disease in patients and potentially mitigate its damage with therapeutic 

treatments.  However, preventing the inflammatory cascade that initiates and necessitates the 

coagulation response may be the only means prevent severe COVID-19 disease.  Importantly, 

these observations of the coagulation pathways may have implications for other infections like 

                  



influenza or Ebola. Overall, we need a better understanding of the coagulation host response to 

effectively treat and overcome SARS-CoV-2 and future emergent pathogens. 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

                  



 

Figure 1, Activation and modulation of coagulation pathways following SARS-CoV-2 infection.  

Schematic of the lung and an alveolus following SARS-CoV-2 infection. A) Virus infection of type I and 

type II pneumocytes. B) Cytokine storm including IL1, IL6, and TNFa induced in response to viral 

replication. C) Inflammation induced damage activates release of FX, tissue factor (TF) and other 

coagulation factors to activate fibrin deposition to limit fluid accumulation in alveolar spaces.  D) Release 

of  uPA and tPA initiate breakdown of fibrinous structures.  E) PAI-1 blocks activity of uPA and tPA and 

leaves fibrinous structures intact and the lung more rigid.  F) Release of pro-clotting factors into the 

circulatory systems that may impact other target organs.  G) Return to baseline lung function with 

evidence of scarring and damage still in place.  Figure generated using Biorender software. 
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