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Abstract
Respiratory viruses can cause a wide spectrum of pulmonary diseases, ranging from mild, upper respiratory tract
infections to severe and life-threatening lower respiratory tract infections, including the development of acute lung
injury (ALI) and acute respiratory distress syndrome (ARDS). Viral clearance and subsequent recovery from infection
require activation of an effective host immune response; however, many immune effector cells may also cause
injury to host tissues. Severe acute respiratory syndrome (SARS) coronavirus and Middle East respiratory syndrome
(MERS) coronavirus cause severe infection of the lower respiratory tract, with 10% and 35% overall mortality rates,
respectively; however, >50% mortality rates are seen in the aged and immunosuppressed populations. While these
viruses are susceptible to interferon treatment in vitro, they both encode numerous genes that allow for successful
evasion of the host immune system until after high virus titres have been achieved. In this review, we discuss the
importance of the innate immune response and the development of lung pathology following human coronavirus
infection.
© 2014 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain
and Ireland.
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Introduction

Acute lung injury (ALI) and its more severe form,
acute respiratory distress syndrome (ARDS), can arise
after many types of injury to the lung, including sep-
sis, mechanical and chemical injury and bacterial and
viral infections [1]. In ALI, the mortality rate is in
the range 20–30%, with about 55% of the cases pro-
gressing to ARDS within a few days. ARDS causes
significant morbidity and approximately 40% mortal-
ity, resulting in ∼75 000 deaths/year in the USA alone
[2]. In the past two decades, five emerging viruses have
been known to cause significant ARDS-related mortal-
ity, including influenza H1N1 2009 and, in particular,
the highly pathogenic avian influenza H5N1 and H7N9
viruses and the SARS and MERS coronaviruses. In this
review we focus on mechanisms of coronavirus-induced
lung pathogenesis and ARDS.

Human coronavirus (CoV) infections have tradi-
tionally caused a low percentage of annual upper
and lower respiratory infections [3], including severe
disease outcomes in the elderly, immunocompro-
mised patients and infants. HCoV-OC43 (OC43) and
HCoV-229E (229E) were the first documented human
CoVs but, more recently, HCoV-NL63 (NL63) [4]
and HCoV-HKU1 (HKU1) [5] were identified as a

consequence of increased viral surveillance efforts in
the early twenty-first century (Table 1). These four
viruses usually cause acute infection of the upper
respiratory tract and less frequently are associated
with lower respiratory tract [6,7] diseases as well.
Severe disease is both rare and typically associated with
co-morbidities and/or immunosenescence. The past 15
years have also seen the emergence of two new human
coronaviruses that cause significant disease and mortal-
ity. SARS-CoV was identified in 2003 and caused an
acute, atypical pneumonia and diffuse alveolar damage
(DAD) in roughly 8000 patients [8,9]. Those over
65 years of age often developed ARDS, resulting in
mortality rates that exceeded 50%. Overall, SARS-CoV
infection caused nearly 800 fatalities, representing a
nearly 10% mortality rate. More recently, in 2012, a
new human coronavirus, designated MERS-CoV, was
identified. MERS-CoV continues to circulate in camels
and humans, with over 857 official cases and 334
deaths, representing an approximately 35% case fatality
rate to date in humans [10,11]. MERS-CoV-induced
disease is particularly severe in aged patients and those
with pre-existing co-morbidities. MERS-CoV does not
appear to be highly pathogenic or virulent in camels.

SARS-CoV and MERS-CoV have clear zoonotic ori-
gins, although their exact paths from animal reser-
voir to human infection are not yet clear. Viruses with
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Table 1. Human coronaviruses, their receptors, emergence, disease and infection data

Virus Receptor
Discovery and estimated

date of divergence Cell types infected Disease types caused

OC43 Receptor unknown,
sialic acid and
HLA class 1
involvement
[113,114]

Divergence from BCoV in 1890
[115]

Ciliated airway epithelial cells
[116], macrophages in culture
[117], neuronal cells [118]

Upper respiratory infection, GI
infection, pneumonia [119]

229E Aminopeptidase N
[120]

Divergence in 1700–1800
[121], divergence from
NL63 in the eleventh
century [122]

Non-ciliated airway epithelial
cells [116], human monocytes
[123], neuronal cells [118]

Upper respiratory infection
[124], GI infection,
pneumonia [125]

NL63 Ace2 [126] Discovered in 2004 [4],
divergence between 1200
and 1500 [127]

Ciliated airway epithelial cells
[116]

Upper and lower respiratory
infection [6,128],
associated with croup in
children [129]

HKU1 Unknown Discovered in 2005 [5] Ciliated airway epithelial cells
[116]

Upper respiratory infection
and pneumonia [130],
enteric symptoms [131]

SARS Ace2 [130], role for
DC-sign [132]

Emerged in 2002 [133],
divergence estimates from
1986–2002 [134,135]

Epithelial cells [136], ciliated cells,
type II pneumocytes [137]

Lower respiratory infection
[99,138], pneumonia, DAD,
ARDS

MERS DPP4 [139] Emerged in 2012 [25],
common ancestor from
2011–2012 [140]

Airway epithelial cells [141], renal
epithelial cells [142], dendritic
cells [143]

Lower respiratory infection
[25,144], pneumonia, renal
failure

high nucleotide identity to SARS-CoV were found in
key amplifying hosts such as palm civets and rac-
coon dogs in Guangdong Province China during the
2002–2003 SARS epidemic [12]. Later studies identi-
fied highly conserved viruses circulating in horseshoe
bats, including some strains that are able to bind to,
and infect, human cells [13–16]. The existence of novel
bat SARS-like coronaviruses that also use bat, civet
and human angiotensin 1 converting enzyme 2 (ACE2)
receptors for entry, such as SARS-CoV, strongly sug-
gests an opportunity for further zoonotic disease out-
breaks in human and animal populations.

SARS causes an atypical pneumonia characterized
by cough, fever and infiltrates with a ground-glass
appearance on X-ray [17,18]. Early-stage disease was
characterized by acute DAD, with oedema, fibrin and
hyaline membranes in the alveolar spaces, typical of
ALI [19]. Other patients predominantly showed an
acute fibrinous and organizing pneumonia pattern or a
mixture of the two patterns [20,21]. Longer-term disease
courses typically progressed to organizing phase DAD
and eventual deposition of fibrous tissue. Autopsy of
fatal SARS-CoV cases also revealed denuded airways,
haemorrhage and increased macrophage populations
in the lung [22,23]. During the SARS epidemic,
researchers noted that late-term disease progression
was unrelated to viraemia but was more likely to be
associated with immunopathological damage [24].

MERS-CoV has caused sporadic infections, along
with several local outbreaks throughout the Middle
East since its discovery in 2012 [25,26]. Although
much remains unknown, closely related viruses have
been isolated from camels [27] and highly homol-
ogous MERS-like bat CoVs have been identified in
African Neoromicia capensis bats [28]. Local surveil-
lance efforts have detected high levels of antibodies that

recognize MERS-CoV in dromedary camels [29]; fur-
thermore, sampling of archived camel serum samples
has revealed MERS antibodies from as early as 1992
[30]. These data suggest that bat to camel to human
transmission routes may have seeded the 2012 out-
break in human populations, perhaps associated with the
expanding camel trade that has emerged between equa-
torial Africa and Saudi Arabia over the past 20 years.

Animal models of human disease should recapitulate
many of the pathological and immune outcomes seen
in human infections. Numerous models have been
established to better enable our understanding of the
mechanics of SARS-CoV infection and pathogenesis,
although few recapitulate the human disease pheno-
types (Table 2). Initial studies utilized late epidemic
strains in non-human primates [31–33], where mild
to severe disease was observed, depending on the
study location and animal age. To date, the differ-
ences in disease severity noted in primates have not
been reconciled, but may reflect differences in virus
strains or infection conditions. Although still under
development, MERS-CoV replication and disease have
been reported in both rhesus macaques and common
marmosets [34,35]. SARS-CoV replication resulted in
limited disease in young models of immunocompetent
mice [36–38]; however, mild clinical disease was
noted in 1 year-old mice [39]. A mouse-adapted SARS
(MA-SARS) strain was also developed that provides
a model for moderate to lethal disease, depending on
infectious dose, animal age and genetic background
of the host [40–42] (Table 2). The MA-SARS model
faithfully replicates the age-dependent susceptibility
observed in human patients, as well as key features
of human lung pathology, including virus tropism to
airway epithelial cells and type II pneumocytes, pneu-
monia, hyaline membrane formation, development of
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DAD and denudation of airway epithelial cells [40,43].
A limitation may be the rapid clearance of virus titres
that is seen in younger and, to a much lesser extent, in
aged animals. Development of the MA-SARS model
has allowed for in-depth studies of viral pathogenesis
and the host immune response, taking advantage of
immunological tools and reagents for the mouse as
well as the existence of knockout mouse strains. Use
of these tools has greatly added to our understanding
of SARS-CoV pathogenesis, far beyond what could be
learned in in vitro experiments or observational studies
of human cases. Because of receptor incompatibili-
ties, MERS-CoV does not replicate in mice unless the
animals are first transduced with adenovirus vectors
encoding the receptor for entry, human dipeptidyl
peptidase-4 (DPP4) [44].

In this review we focus solely on hCoV interactions
within the context of the respiratory system and infection
of relevant cell types. More specifically, we review some
CoV–host interactions that alter cell-intrinsic antiviral
defence programmes and other host pathways that con-
tribute to pathological findings of ARDS, with its asso-
ciated exudative and organizing phase diffuse alveolar
damage and pulmonary fibrosis.

Innate immune response

NF-κB signalling is an important component of numer-
ous cellular responses, including stress, cytokine sig-
nalling, response to bacterial or viral infection and
apoptosis [45,46]. The SARS-CoV envelope (E) pro-
tein stimulates NF-κB signalling [47], leading to lung
cytokine signalling and inflammatory cell recruitment.
The SARS-CoV papain-like protease (PLP) has also
been shown to antagonize NF-κB signalling [48] in
vitro. Chemical inhibitors of NF-κB signalling reduce
lung pathology and inflammation following MA-SARS
infection, demonstrating the importance of this pathway
[47] in pathogenesis. While the SARS-CoV E protein
is not required for viral replication, it is important for
inhibition of the host cellular stress response, apoptosis
and unfolded protein response [49,50]. The E protein,
along with the SARS-CoV ORF3a and ORF8a proteins,
has ion channel activity [50] and may contribute to vas-
cular permeability and fluid accumulation in the lung
following SARS-CoV infection. SARS-CoV lacking E
has been shown to be an effective vaccine [51,52] and
a MERS-CoV clone lacking E has been generated [53],
although replication requires expression of E in trans.

SARS-CoV, and to a greater extent MERS-CoV, are
highly sensitive to interferon treatment in cell culture.
Interestingly, SARS-CoV pathogenesis does not sig-
nificantly change in various type I interferon (IFN)
knockout mouse models, except for a slight increase in
overall virus titres [54–56]. Despite this, STAT1- and
Myd88-deficient mice are significantly more vulnera-
ble to lethal outcomes following infection [56,57]. Like
many viruses, CoVs encode a suite of genes that antag-
onize cell-intrinsic innate immune defence programmes

in the infected host cell (reviewed in [58]). Numerous
in vitro studies have demonstrated the IFN antagonist
activity of both SARS-CoV and MERS-CoV proteins
[59–61], and a detailed review of SARS-CoV evasion
of the innate immune response was recently published
by Totura and Baric [62].

Analysis of IFN-stimulated gene (ISG) expression
in Calu-3 human airway epithelial cells highlighted
the ability of SARS-CoV and MERS-CoV to avoid
detection by the host [63]. As compared with influenza
A viruses, ISG transcripts and proteins are not induced
until late after SARS-CoV and MERS-CoV infection,
when peak titres have already occurred in culture
(∼18–24 h). Late in infection, ISGs showed nearly
universally increased expression following SARS-CoV
infection, except for ACE2 and Serping1. However, a
much larger subset of ISGs had significantly decreased
expression following MERS-CoV infection. Like
MERS-CoV, H5N1 VN1203 infection also resulted
in significant down-regulation of subsets of ISGs. No
consistent pattern in up-regulation or down-regulation
of gene expression correlated with transcription factor
usage, suggesting that a novel mechanism may be
responsible for expression of the ISG subsets. Cells
infected with MERS-CoV and H5N1 avian influenza
were shown to have specifically altered open and
closed chromatin structures, potentially limiting the
ability of transcription factors to access and bind cer-
tain ISG promoter regions. The mechanism by which
MERS-CoV induces this chromatin structural alteration
is as yet unknown. In contrast, the NS1 protein of
H5N1 was responsible for the chromatin changes in
influenza-infected cells. Although speculative, it seems
likely that many RNA viruses may encode strategies to
epigenetically alter host chromatin structure, influenc-
ing host gene expression. This newly identified method
of ISG control requires additional study.

SARS-CoV further evades the host immune
response by masking its RNA genome. This mech-
anism may be partially mediated by the production of
double-membrane vesicles, which could sequester RNA
replication intermediates away from the host-sensing
machinery [64,65]. MDA5 and IFIT1 are important host
antiviral sensor or antiviral defence ISGs that detect
viral RNAs. IFIT1 recognizes unmethylated 2′-O RNA
[66] and alters efficient translation/stability of uncapped
viral mRNAs [67]. SARS-CoV and other coronavirus
RNAs are protected from IFIT recognition because they
encode a 2′-O-methyltransferase (2-OMT) activity in
the viral replicase protein, nsp16 [68,69]. SARS-CoV
is much more sensitive to interferon treatment in the
absence of functional nsp16 methyltransferase activity,
and mutant viral titres drop rapidly in both infected
epithelial cells and mice. Deletion or knockdown of
either MDA5 or IFIT1 restored mutant SARS-CoV
viral loads demonstrated the essential role of these host
proteins in detecting pathogen-associated molecular
patterns. Ablation of the 2-OMT activity may provide
a universal strategy to rationally design live attenuated
mutants of contemporary and newly emerging CoV.
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Table 2. Non-human primate and mouse models of SARS-CoV and MERS-CoV infection; less common models include hamster [145],
ferret [146] and cat
Virus Animal model Virus modifications? Disease types caused Drawbacks Aged model?

SARS-CoV Rhesus macaque None Viral replication, mild
pneumonia [147]

Expense, ethical considerations,
no severe disease

African green
monkey

None Viral replication, pneumonitis
[33], hyaline membrane
formation [102]

Expense, ethical considerations,
no severe disease

Cynomolgus
macaque

None Viral replication, upper
respiratory symptoms,
pneumonia [31,148]

Expense, ethical considerations Yes [149]

Ace2 transgenic
mice

None Viral replication, weight loss,
inflammatory cell infiltrates
[150]

Virus causes encephalitis [150],
use of knockout mice requires
extensive breeding

Mouse None Virus replication, mild
pneumonia in aged mice
[39]

Minimal pathogenesis, especially
in young mice [36]

Yes [39]

SARS-MA15 Mouse Six point mutations
from serial mouse
passage [40]

Viral replication, weight loss
[40], pneumonia, DAD [43],
pulmonary fibrosis [56]

Virus has been adapted from
human strains

Yes [41]

MERS-CoV Rhesus macaque None Viral replication [35], transient
pneumonia

Expense, ethical considerations,
no severe disease

hAd5-DPP4 mouse None Viral replication [44], weight
loss in immune knockouts

Requires infection with hAd5 to
express human DPP4

Yes [44]

Both in vivo and in vitro studies have addressed the
role of specific proteins in the innate immune system,
often ISGs, in SARS-CoV pathogenesis. Transcriptional
analysis on autopsy tissue from SARS-CoV-infected
patients revealed increased expression of STAT1 along
with other IFN-induced cytokines [70]. The SARS-CoV
accessory protein ORF6 was identified as an interferon
antagonist important for viral replication in low mul-
tiplicity of infection (MOI) in vitro infections [71,72].
ORF6 was subsequently found to sequester Karyo-
pherin 2α, a nuclear import factor, and block the nuclear
translocation of STAT1 after SARS-CoV infection.
Interestingly, STAT1 translocation to the nucleus is not
blocked in MERS-CoV-infected cells, so it remains
uncertain whether antagonists of nuclear import are
encoded in the viral genome [73]. Transcriptional pro-
filing of SARS-CoV-infected macaques revealed robust
IFN signalling, including STAT1 translocation to the
nucleus, in the lung but not in the cells that stained
positive for viral antigen [74]. These data highlight the
importance of in vivo studies versus high MOI in vitro
studies. Significantly, they also highlight the need to
examine, or at least consider, expressing and signalling
differences in specific cell types instead of global
transcriptomic studies in those in vivo experiments.

STAT1 knockout mice have been studied extensively
in the context of viral infection, typically showing a
heightened susceptibility to disease, due to the lack
of a type I IFN response [75]. These knockouts were
first tested for SARS-CoV susceptibility using the Tor2
strain in a sublethal model; animals deficient in STAT1
were unable to clear virus from the lung and developed
a more severe and longer-lasting pneumonia than the
control mice [76]. Frieman et al showed that STAT1
knockout mice are highly susceptible to infection with
MA-SARS in a novel, IFN-independent mechanism
[56]. MA-SARS-infection causes massive inflammatory

cell influx in the lungs of STAT1 knockout mice,
including large numbers of macrophages, neutrophils
and eosinophils. STAT1 knockout mice have gross
pathological changes in their lungs, including massive
haemorrhage as well as increased lung size and stiffness.
As seen in some humans, these mice develop severe
pulmonary fibrosis and succumb to disease at late time
points after infection. Stained lung sections revealed
the presence of collagen protein in alveolar exudates in
STAT1 knockouts, indicating development of early-stage
pulmonary fibrosis. Subsequent studies demonstrated
that STAT1 knockout animals developed a Th2-skewed
immune response and had significant numbers of alter-
natively activated or M2 macrophages in their lungs
[77]. These macrophages were characterized by positive
CD11c, arginase and mannose receptor staining. STAT6
is required for the development of alternatively activated
macrophages, and STAT1/STAT6 double knockout mice
do not develop the severe lung disease and pro-fibrotic
lesions observed in the STAT1 single knockout [78],
thus demonstrating that these macrophages are essential
for development of the pulmonary fibrosis phenotype.
Further elegant experiments showed that it is the STAT1
deficiency in monocyte/macrophage cells, not the
infected epithelial cells, that drives alternatively acti-
vated macrophage production and induction of fibrotic
lung disease following SARS-CoV infection. Alter-
natively activated macrophages are typically induced
by the Th2 cytokines IL-4 and IL-13; they have an
anti-inflammatory role and play an important role in
wound-healing processes [151].

ACE2 is expressed on well-differentiated airway
epithelial cells [79] and its expression increases follow-
ing type I interferon treatment [63]. Both ACE2 protein
levels and RNA expression are down-regulated after
either in vitro or in vivo SARS-CoV infection [63,80]
and NL63 also down-regulates ACE2 expression
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following in vitro infection [81]. It has previously been
reported that ACE2 and angiotensin-2 protect mice from
sepsis- and acid aspiration-induced ALI [82]. Addi-
tionally, histopathological lung disease worsens when
spike-Fc is inoculated into mice with ALI [80]. The
normal function of ACE2 is to inactivate angiotensin-2,
a negative regulator of the renin–angiotensin system
[83,84]. This system controls blood pressure and is
involved in the development of pulmonary hyperten-
sion and pulmonary fibrosis. The renin–angiotensin
system is involved in lipopolysaccharide (LPS)-induced
neutrophil recruitment to the lung [85]. Multiple
genome-wide association studies have investigated
an association between genetic variation in ACE and
susceptibility to ARDS, with mixed results [86]. The
role of DPP4 in MERS-CoV infection is discussed in
detail by Haagmans et al in a separate review in this
issue [152].

High ISG expression has been linked to development
of ARDS [87]. Furthermore, it has been suggested that
unregulated IFN responses contributed to development
of immunopathology and severe disease following
SARS-CoV infection [88]. The data discussed above
support this hypothesis and suggest that early control
of ISG signalling may be a means of preventing or
controlling the development of severe lung disease.
Expression of the ISG Serping1 is also decreased
following SARS-CoV infection of epithelial cells; it
functions by inhibiting the complement system as well
as several proteases in the coagulation pathway. The
role of the coagulation, fibrinolysis and wound healing
in ARDS development are discussed below.

Acute respiratory distress syndrome (ARDS),
coagulation, fibrinolysis and respiratory function

The alveoli of the lung are where gas exchange occurs,
providing oxygen to blood flowing through capillar-
ies in the alveolar membrane. The alveolar walls are
composed of type I and type II pneumocytes, along
with alveolar macrophages [89]. Type I pneumocytes
cover 95% of the alveolar surface area and allow for gas
exchange with blood in the capillaries of the lung. Type
II pneumocytes are the progenitors of type I pneumo-
cytes and are also responsible for generating pulmonary
surfactant [90], a mixture of lipids and surfactant pro-
teins that is crucial in reducing surface tension in the
lung. SARS-CoV infection causes desquamation of
pneumocytes in humans and mice, contributing to alve-
olar dysfunction, oedema and haemorrhage. Alveolar
macrophages play an essential role in surveillance of
the local environment and inhibit an excessive immune
response, although this inhibition can also block an
effective response to SARS-CoV infection [91]. The
functions of these cell types are critical in maintaining
balance between inflammation, coagulation and wound
repair, especially following lung injuries such as viral
infection [92].

In ARDS patients, uncontrolled inflammation, fluid
accumulation and developing fibrosis severely com-
promise gas exchange and lead to respiratory failure.
SARS-CoV and influenza infect type I and type II
pneumocytes in the lung [93,94]. ARDS patients exhibit
decreased surfactant levels [95] and MA-SARS infec-
tion results in decreased surfactant transcript and protein
levels [43]. Decreased surfactant, and the consequent
increase in surface tension, reduces the ability of the
lung to expand and contract during normal respiration;
it also heightens the risk of lung collapse during expira-
tion. Respiratory dysfunction occurs when the alveolar
membranes are obstructed, or when the ability of the
lung to expand and contract, circulating oxygenated
air, is compromised. Lethal SARS-CoV infection in
the mouse and human is characterized by a breakdown
of alveolar membrane integrity, resulting in accumu-
lation of fluid exudates in the alveolar spaces. Virus
infection also results in an overwhelming cytokine
response, severe lung tissue damage and respiratory
failure [96–99]. The progression from initial disease
to diffuse alveolar damage and the exudative and orga-
nizing stage of DAD is often independent of high-titre
viral replication [24], indicating that this severe disease
outcome is primarily driven by an immunopathological
response, including inflammatory cell recruitment and
viral damage to type II pneumocytes. This conclusion
is further supported by non-human primate and mouse
models of SARS-CoV infection, where lethal disease is
more often associated with severe pulmonary lesions,
alveolar exudates and respiratory dysfunction than with
high viral load [43,100]. MA-SARS infection results
in peak viral titres at 1–2 days post-infection, along
with airway denudation and resulting debris, which can
occlude the small airways. Severe lung disease, includ-
ing inflammatory cell infiltrates, haemorrhage, alveolar
oedema and hyaline membrane formation typical of the
exudative stage of DAD (Figure 1), occurs at days 4–7
post-infection, when virus loads in the lung are dropping
rapidly and/or are below the limit of detection. Many
ISGs stimulated by SARS-CoV infection are involved
in wound-healing responses and thus may contribute to
SARS-induced ALI and ARDS.

While SARS-CoV evades detection by the host
immune system and causes minimal changes in tran-
script and protein levels for the first 24 h of infection
[43], it ultimately induces a massive signalling response
in infected lungs. Pro-inflammatory cytokines and
chemokines, including IL-6, TNFα, IL-1β and CCL2
[57], recruit inflammatory cells to the site of infection.
Neutrophils and cytotoxic T cells, along with these
cytokines, can induce tissue damage, including vas-
cular leakage, and stimulate pulmonary fibrosis [101].
Pro-fibrotic genes, including Tgfβ1, Ctgf and Pdgfa and
numerous collagen transcripts, have increased expres-
sion following MA-SARS infection. Fluid exudates,
haemorrhage and fibrin are all observed in the alveolar
spaces of SARS patients, as well as in animal models of
disease [17,43,102], increasing in severity as a function
of age. In response, the coagulation cascade is activated,
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Figure 1. MA-SARS lung immunopathology. (A) Mock-infected lung stained with haematoxylin and eosin. (B) Large airway of a C57BL/6 J
(B6) mouse, 7 days post-infection, with 105 plaque-forming units (PFU) MA-SARS, shows denudation of the epithelial cells. (C, D)
Immunohistochemical staining of the SARS-CoV N protein at 2 days post-infection shows staining consistent with infection of airway
epithelial cells and type II pneumocytes, respectively. (E) MSB staining highlights fibrin in the parenchyma of the lung (red staining) in B6
mice, 7 days post-infection with 105 PFU MA-SARS. (F) Perivascular cuffing in a B6 mouse, 4 days post-infection with 105 PFU MA-SARS.
(G) Hyaline membranes in the parenchyma of the lung of a B6 mouse, 7 days post-infection with 105 PFU MA-SARS. (H) Inflammation in the
lung of a B6 mouse, 7 days post-infection with 104 PFU MA-SARS. (I) Haemorrhage in the lung of a Serpine1 mouse, 7 days post-infection
with 104 PFU MA-SARS.

including increased factor 10 (FX), F2, F3 (tissue
factor), F11, F12 and F7 transcript levels. Activation
of the coagulation cascade results in F10 cleavage of
prothrombin into thrombin and subsequent thrombin
cleavage of fibrinogen into fibrin [103]. Fibrin clots
in the alveoli are a prominent feature of SARS-CoV
infection in humans and mice. The goal of this coagula-
tion response is likely to protect the host by sealing the
alveoli, preventing alveolar flooding and haemorrhage,
which limit oxygen exchange and endanger patient sur-
vival. Collagen expression is also increased following
SARS-CoV infection [43]. Collagen accumulation, fib-
rin and fibrin clots all contribute to a developing fibrotic
lung state, while at the same time stimulating the
infected host to up-regulate fibrinolytic pathways [92].

Profibrinolytic genes include members of the uroki-
nase pathway, such as urokinase (plau), tPA and plasmin
(plg) [104]. The urokinase signalling pathway leads to
cleavage and activation of plasmin into plasminogen;
this protease then cleaves fibrin clots. Serpine1 and
Serpine2 are negative regulators of urokinase pathway
and inhibit urokinase and tissue plasminogen activator
(tPA) activity. Urokinase signalling is highly active
in the absence of Serpine1, and this imbalance often
results in haemorrhage in knockout mice. Serpine1 is
highly expressed in SARS patients, non-human primates
and small animal models [43,74,105]. ARDS studies,
independent of coronavirus infection, have attributed
this Serpine1 expression to alveolar macrophages and
type II pneumocytes [106,107]. MA-SARS infection
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Type I
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Figure 2. Model of an infected alveolus in the lung. Type I and type II pneumocytes make up the alveolar walls and resident alveolar
macrophages and pulmonary surfactant exist in the airspace (A). In the acute phase of SARS-CoV infection (B), type I and type II pneumocytes
are infected and secrete inflammatory cytokines, while surfactant levels decrease. During the late stage/tissue damage portion of viral
infection, viral titres decrease, while airway debris, pulmonary oedema and hyaline membrane formation all impede respiration (C).

in a Serpine1 knockout mouse model results in lethal
disease with extreme lung pathology [43]. Conversely,
MA-SARS-infected mice with a genetic deficiency in
tPA have increased exudates in the lung. The dysregula-
tion of these coagulation/anti-coagulation cascades can
result in worsening end-stage lung disease conditions,
resulting in death.

Profibrotic and profibrinolytic signalling are part
of the wound-healing response, along with other
extracellular matrix (ECM) remodelling pathways
[101]. SARS-CoV infection causes massive tissue
remodelling through urokinase and coagulation path-
ways activity, as discussed above. Other important
wound-healing pathways and ECM proteins with
altered signalling following SARS-CoV infection
include matrix metalloproteinases, EGFR and colla-
gens [43]. Successful recovery from ALI requires a
delicate balance of pro-inflammatory, profibrotic and
profibrinolytic responses. By altering ISG expression,
including ACE2, STAT1 and Serpine1, SARS-CoV
infection of alveolar epithelial cells sets the stage for the
development of severe lung disease, including ARDS.

SARS and MERS patients with severe lung disease
exhibited lung consolidation, decreased blood oxygen
saturation and often required intubation and ventilation
[99,108,109]. Small animal models of severe lung dis-
ease typically lack physiological readouts of respiratory
function that can be directly correlated back to human
signs of disease. Whole-body plethysmography captures
respiratory data in unrestrained animals, allowing for
longitudinal measurement of pulmonary function; these
data can also be directly related to some human respi-
ratory metrics [110,111]. SARS-CoV infection causes

increased Penh, a calculated measure of airway resis-
tance and increased EF50 (mid-breath exhalation force),
indicating that respiratory function is compromised and
animals must do more work to breathe [69]. Unpub-
lished data (Gralinski and Menachery) indicate that it
is the exhalation portion of each breath that is impacted
by SARS-CoV infection, likely due to extensive debris
clogging the conducting airways. Further experiments
have shown that Stat1 knockout mice have increased
Penh levels early after infection, and that at late time-
points they have reduced lung capacity, corresponding
with the profibrotic histopathological changes observed
in the lung (Gralinski, unpublished data).

Concluding thoughts

ARDS is a devastating end-stage lung disease with no
cure. Despite numerous clinical trials, improved clinical
outcomes have remained marginal at best [112]. Several
highly pathogenic emerging virus infections cause
ARDS with high frequency, underscoring the critical
public health importance of understanding the virolog-
ical components and molecular mechanisms that drive
this devastating end-stage lung disease. Furthermore,
a portion of ARDS cases may progress to pulmonary
fibrosis, another clinically devastating end-stage lung
disease with few treatment options. Consequently,
understanding the development of ARDS following
viral infection remains a high-priority research topic
that is germane to global health and pandemic disease
control. The twenty-first century has demonstrated that
zoonotic events will continue to introduce coronaviruses
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and other viruses into the human population, and that
these viruses have the potential to spread rapidly, cause
significant disease in communities and disrupt the
global economy. An emerging theme is the connectivity
between virus infection, complement and coagulation
cascade activation, pro-inflammatory and profibrotic
cytokine responses and disease severity. More studies
are needed to unravel the complex interactions between
these pathways that can interact to promote or dysreg-
ulate wound recovery after life-threatening respiratory
virus infection. In particular there is a need for including
well-articulated animal models that faithfully recapit-
ulate disease processes across species. Only through a
better understanding of the interplay between a dysreg-
ulated host immune response and ALI and ARDS can
more effective treatments and therapeutics be developed.
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