7 research outputs found
Distance support in-service engineering for the high energy laser
The U.S. Navy anticipates moving to a shipboard high-energy laser program of record in the fiscal year 2018 and achieving an initial operational capability by 2020. The design of a distance support capability within the high-energy laser system was expected to assist the Navy in reaching this goal. This capstone project explored the current Navy architecture for distance support and applied system engineering methodologies to develop a conceptual distance support framework with application to the high-energy laser system. A model and simulation of distance support functions were developed and used to analyze the feasibility in terms of performance, cost, and risk. Results of this capstone study showed that the implementation of distance support for the high-energy laser system is feasible and would reduce the total ownership cost over the life of the program. Furthermore, the capstone shows that moving toward the team’s recommended distance support framework will address current gaps in the Navy distance support architecture and will provide a methodology tailored to modern enterprise naval systems.http://archive.org/details/distancesupporti1094545248Approved for public release; distribution is unlimited
Inhibition of Protein N-Glycosylation Blocks SARS-CoV-2 Infection
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) extensively glycosylates its spike proteins, which are necessary for host cell invasion and the target of both vaccines and immunotherapies. These glycans are predicted to modulate spike binding to the host receptor by stabilizing its open conformation and host immunity evasion. Here, we investigated the essentiality of both the host -glycosylation pathway and SARS-CoV-2 glycans for infection. Ablation of host glycosylation using RNA interference or inhibitors, including FDA-approved drugs, reduced the spread of the infection, including that of variants B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma) and B.1.617.2 (Delta). Under these conditions, cells produced fewer virions and some completely lost their infectivity. Furthermore, partial enzymatic deglycosylation of intact virions showed that surface-exposed glycans are critical for cell invasion. Altogether, we propose protein glycosylation as a targetable pathway with clinical potential for treatment of COVID-19. The coronavirus SARS-CoV-2 uses its spike surface proteins to infect human cells. Spike proteins are heavily modified with several -glycans, which are predicted to modulate their function. In this work, we show that interfering with either the synthesis or attachment of spike -glycans significantly reduces the spread of SARS-CoV-2 infection , including that of several variants. As new SARS-CoV-2 variants, with various degrees of resistance against current vaccines, are likely to continue appearing, halting virus glycosylation using repurposed human drugs could result in a complementary strategy to reducing the spread of COVID-19 worldwide
Recommended from our members
Glycolytic lactate in diabetic kidney disease.
Lactate elevation is a well-characterized biomarker of mitochondrial dysfunction, but its role in diabetic kidney disease (DKD) is not well defined. Urine lactate was measured in patients with type 2 diabetes (T2D) in 3 cohorts (HUNT3, SMART2D, CRIC). Urine and plasma lactate were measured during euglycemic and hyperglycemic clamps in participants with type 1 diabetes (T1D). Patients in the HUNT3 cohort with DKD had elevated urine lactate levels compared with age- and sex-matched controls. In patients in the SMART2D and CRIC cohorts, the third tertile of urine lactate/creatinine was associated with more rapid estimated glomerular filtration rate decline, relative to first tertile. Patients with T1D demonstrated a strong association between glucose and lactate in both plasma and urine. Glucose-stimulated lactate likely derives in part from proximal tubular cells, since lactate production was attenuated with sodium-glucose cotransporter-2 (SGLT2) inhibition in kidney sections and in SGLT2-deficient mice. Several glycolytic genes were elevated in human diabetic proximal tubules. Lactate levels above 2.5 mM potently inhibited mitochondrial oxidative phosphorylation in human proximal tubule (HK2) cells. We conclude that increased lactate production under diabetic conditions can contribute to mitochondrial dysfunction and become a feed-forward component to DKD pathogenesis
Lipid Rafts, Exosomal Vesicles And Anti-Giardial Therapies
Giardia lamblia, a protozoan parasite, is a major cause of waterborne infection, worldwide. While the trophozoite form of this parasite induces pathological symptoms in the gut, the cyst forms transmit the infection via contaminated water. Since Giardia is a non-invasive parasite, the actual mechanism by which it causes infection remains elusive. We have previously reported that Giardia assembles cholesterol and GM1 glycolipid-enriched lipid rafts (LRs) that participate in encystation and cyst production. To further delineate the role of LRs in pathogenesis, we isolated LRs from Giardia and subjected them to proteomic analysis. Various cellular proteins including the virulent proteinsâe.g., giardins, variant surface proteins (VSPs), arginine deaminases (ADAs), elongation factors (EFs), ornithine carmoyltransferases (OTCs) and high cysteine-rich membrane proteins (HCMPs)âwere found to be present in LRs. Since Giardia secretes virulent proteins (secretome) encapsulated in extracellular vesicles that induce proinflammatory responses in hosts, vesicles released by the parasite were isolated and subjected to nanoparticle tracking and proteomic analyses. Two types of vesiclesâi.e., exosome-like small vesicles (SVs; \u3c100nm) and microvesicles-like large vesicles (LVs; 100â400 nm)âwere identified and found to contain diverse group of proteins including the virulent proteins. Pretreatment of the parasite with two giardial LRs disruptors, nystatin (27 µM) and oseltamivir (20 µM), altered the expression profiles of virulent proteins in LVs and SVs, however the effects were more robust in case of SVs. To examine the potential role of rafts and vesicles in pathogenicity, Giardia-infected mice were treated with oseltamivir (1.5 mg/kg and 3.0 mg/kg) and the shedding of cysts were monitored. It was observed that this drug was significantly effective in reducing the parasite load in mice. My results suggest that virulent factors accumulated in gLRs and secretes via SVs and LVs participate in spreading giardiasis and could be targeted for drug development in the future. I have proposed two Specific Aims in my dissertation. In Aim-1, I have proposed to determine if the lipid rafts and vesicles share proteins including the virulent proteins of Giardia. The goal of Specific Aim-2 is to examine if raft disintegrating compounds and their derivatives can be used as potential anti-giardial agents
mPR-Specific Actions Influence Maintenance of the Blood–Brain Barrier (BBB)
Cerebral cavernous malformations (CCMs) are characterized by abnormally dilated intracranial microvascular sinusoids that result in increased susceptibility to hemorrhagic stroke. It has been demonstrated that three CCM proteins (CCM1, CCM2, and CCM3) form the CCM signaling complex (CSC) to mediate angiogenic signaling. Disruption of the CSC will result in hemorrhagic CCMs, a consequence of compromised blood–brain barrier (BBB) integrity. Due to their characteristically incomplete penetrance, the majority of CCM mutation carriers (presumed CCM patients) are largely asymptomatic, but when symptoms occur, the disease has typically reached a clinical stage of focal hemorrhage with irreversible brain damage. We recently reported that the CSC couples both classic (nuclear; nPRs) and nonclassic (membrane; mPRs) progesterone (PRG)-receptors-mediated signaling within the CSC-mPRs-PRG (CmP) signaling network in nPR(−) breast cancer cells. In this report, we demonstrate that depletion of any of the three CCM genes or treatment with mPR-specific PRG actions (PRG/mifepristone) results in the disruption of the CmP signaling network, leading to increased permeability in the nPR(−) endothelial cells (ECs) monolayer in vitro. Finally, utilizing our in vivo hemizygous Ccm mutant mice models, we demonstrate that depletion of any of the three CCM genes, in combination with mPR-specific PRG actions, is also capable of leading to defective homeostasis of PRG in vivo and subsequent BBB disruption, allowing us to identify a specific panel of etiological blood biomarkers associated with BBB disruption. To our knowledge, this is the first report detailing the etiology to predict the occurrence of a disrupted BBB, an indication of early hemorrhagic events
Inhibition of Protein N- Glycosylation Blocks SARS-CoV-2 Infection
The coronavirus SARS-CoV-2 uses its spike surface proteins to infect human cells. Spike proteins are heavily modified with several N -glycans, which are predicted to modulate their function. </jats:p
Female protection against diabetic kidney disease is regulated by kidney-specific AMPK activity
Reduced kidney AMPK activity is associated with nutrient stress-induced chronic kidney disease (CKD) in male mice. In contrast, female mice resist nutrient stress-induced CKD. The role of kidney AMPK in sex-related organ protection against nutrient stress and metabolite changes were evaluated in diabetic kidney tubule-specific AMPKg2KO (KTAMPKg2ΚΟ) male and female mice. In WT males, diabetes increased albuminuria, urinary kidney injury molecule-1, hypertension, kidney p70S6K phosphorylation, and kidney matrix accumulation; these features were not exacerbated with KTAMPKg2ΚΟ. Whereas WT females had protection against diabetes induced kidney injury, KTAMPKg2ΚΟ led to loss of female protection against kidney disease. 17b-estradiol ameliorated high glucose-induced AMPK inactivation, p70S6K phosphorylation and matrix protein accumulation in kidney tubule cells. The mechanism for female protection against diabetes-induced kidney injury is likely via an estrogen-AMPK pathway, as inhibition of AMPK led to loss of estrogen protection to glucose-induced mTORC1 activation and matrix production. RNA-seq and metabolomic analysis identified a decrease in the degradation pathway of phenylalanine and tyrosine resulting in increased urinary phenylalanine and tyrosine levels in females. The metabolite levels correlated with loss of female protection. The findings provide new insights to explain evolutionary advantages to females during states of nutrient challenges.</p