34 research outputs found

    A probiotic mix partially protects against castration-induced bone loss in male mice

    Get PDF
    Studies in postmenopausal women and ovariectomized mice show that the probiotic mix Lacticaseibacillus paracasei DSM13434, Lactiplantibacillus plantarum DSM 15312 and DSM 15313 (L. Mix) can protect from bone loss caused by sex steroid deficiency. Whether probiotic bacteria can protect bone also in sex steroid-deficient males is less studied. We used the orchiectomized mouse as a model for age-dependent bone loss caused by decreasing sex hormone levels in males. We treated 10-week-old male mice with either vehicle (veh) or L. Mix for 6 weeks, starting 2 weeks before orchiectomy (orx) or sham surgery. Importantly, mice treated with L. Mix had a general increase in total body bone mineral density (BMD) and lean mass (P ≤ 0.05) compared with veh-treated mice. Detailed computer tomography analysis of dissected bones showed increased trabecular BMD of the distal metaphyseal region of the femur in L. Mix compared to veh-treated orx mice (+8.0%, P ≤ 0.05). In the vertebra, L. Mix treatment increased trabecular bone volume fraction BV/TV (+11.5%, P ≤ 0.05) compared to veh in orx mice. Also, L. Mix increased the levels of short-chain fatty acids (SCFAs) such as propionate and acetate and important intermediates in SCFA synthesis such as succinate and lactate in the cecal content of male mice. In conclusion, L. Mix treatment resulted in a general increase in BMD in adult male mice and prevented trabecular bone loss in femur and vertebra of orx mice. These bone protective effects of L. Mix were associated with increased levels of SCFAs in the cecal content of male mice

    Spleen proteomics data from high fat diet fed mice

    Get PDF
    The composition of the diet affects many processes in the body, including body weight and endocrine system. We have previously shown that dietary fat also affects the immune system. Mice fed high fat diet rich in polyunsaturated fatty acids survive S. aureus infection to a much greater extent than mice fed high fat diet rich in saturated fatty acids. Here we present data regarding the dietary effects on protein expression in spleen from mice fed three different diets, I) low fat/chow diet (LFD, n = 4), II) high fat diet rich in saturated fatty acids (HFD-S, n = 4) and III) high fat diet rich in polyunsaturated fatty acids (HFD-P, n = 4). We performed mass spectrophotometry based quantitative proteomics analysis of isolated spleen by implementing the isobaric tags for relative and absolute quantification (iTRAQ) approach. Mass spectrometry data were analyzed using Proteome Discoverer 2.4 software using the search engine mascot against Mus musculus in SwissProt. 924 proteins are identified in all sets (n = 4) for different dietary effects taken for statistical analysis using Qlucore Omics Explorer software. Only 20 proteins were found to be differentially expressed with a cut-off value of false discovery rate < 0.1 (q-value) when comparing HFD-S and HFD-P but no differentially expressed proteins were found when LFD was compared with HFD-P or HFD-S. The identified proteins and statistical analysis comparing HFD-S and HFD-P diets are available as a supplementary file S1. We identified a subset of proteins that showed an inverse expression pattern between two high fat diets. These differentially expressed proteins were further classified by gene ontology for their role in biological processes and molecular functions. Mass spectrometry raw data are also available via ProteomeXchange with identifier PXD020365

    Six Tissue Transcriptomics Reveals Specific Immune Suppression in Spleen by Dietary Polyunsaturated Fatty Acids

    Get PDF
    Dietary polyunsaturated fatty acids (PUFA) are suggested to modulate immune function, but the effects of dietary fatty acids composition on gene expression patterns in immune organs have not been fully characterized. In the current study we investigated how dietary fatty acids composition affects the total transcriptome profile, and especially, immune related genes in two immune organs, spleen (SPL) and bone marrow cells (BMC). Four tissues with metabolic function, skeletal muscle (SKM), white adipose tissue (WAT), brown adipose tissue (BAT), and liver (LIV), were investigated as a comparison. Following 8 weeks on low fat diet (LFD), high fat diet (HFD) rich in saturated fatty acids (HFD-S), or HFD rich in PUFA (HFD-P), tissue transcriptomics were analyzed by microarray and metabolic health assessed by fasting blood glucose level, HOMA-IR index, oral glucose tolerance test as well as quantification of crown-like structures in WAT. HFD-P corrected the metabolic phenotype induced by HFD-S. Interestingly, SKM and BMC were relatively inert to the diets, whereas the two adipose tissues (WAT and BAT) were mainly affected by HFD per se (both HFD-S and HFD-P). In particular, WAT gene expression was driven closer to that of the immune organs SPL and BMC by HFDs. The LIV exhibited different responses to both of the HFDs. Surprisingly, the spleen showed a major response to HFD-P (82 genes differed from LFD, mostly immune genes), while it was not affected at all by HFD-S (0 genes differed from LFD). In conclusion, the quantity and composition of dietary fatty acids affected the transcriptome in distinct manners in different organs. Remarkably, dietary PUFA, but not saturated fat, prompted a specific regulation of immune related genes in the spleen, opening the possibility that PUFA can regulate immune function by influencing gene expression in this organ

    Overexpression of WNT16 Does Not Prevent Cortical Bone Loss Due to Glucocorticoid Treatment in Mice

    Get PDF
    Glucocorticoids (GC) are commonly used for the treatment of a wide variety of autoimmune, pulmonary, gastrointestinal, and malignancy conditions. One of the devastating side effects of GC use is osteoporotic fractures, particularly in the spine and hip. Bisphosphonates (BP) are the most commonly prescribed pharmacological agents for the prevention and treatment of GC-induced osteoporosis (GIO). However, GIO is marked by reduced bone formation and BP serves mainly to decrease bone resorption. The WNT signaling pathway plays a major role in bone and mineral homeostasis. Previously, we demonstrated that overexpression of WNT16 in mice led to higher bone mineral density and improved bone microarchitecture and strength. We hypothesized that WNT16 overexpression would prevent bone loss due to glucocorticoid treatment in mice. To test our hypothesis, we treated adult wild-type and WNT16-transgenic mice with vehicle and GC (prednisolone; 2.1 mg/kg body weight) via slow-release pellets for 28 days. We measured bone mass and microarchitecture by dual-energy X-ray absorptiometry (DXA) and micro-CT, and performed gene expression and serum biochemical analysis. We found that GC treatment compared with the vehicle significantly decreased femoral areal bone mineral density (aBMD), bone mineral content (BMC), and cortical bone area and thickness in both wild-type and transgenic female mice. In contrast, the trabecular bone parameters at distal femur were not significantly changed by GC treatment in male and female mice for both genotypes. Further, we observed significantly lower level of serum P1NP and a tendency of higher level of serum TRAP in wild-type and transgenic mice due to GC treatment in both sexes. Gene expression analysis showed lower mRNA levels of Wnt16, Opg, and Opg/Rankl ratio in GC-treated female mice for both genotypes compared with the sex-matched vehicle-treated mice. These data suggest that although WNT16 overexpression resulted in higher baseline bone mineral density and bone volume per trabecular volume (BV/TV) in the transgenic mice, this was insufficient to prevent bone loss in mice due to glucocorticoid treatment

    A plasma protein-based risk score to predict hip fractures

    Get PDF
    As there are effective treatments to reduce hip fractures, identification of patients at high risk of hip fracture is important to inform efficient intervention strategies. To obtain a new tool for hip fracture prediction, we developed a protein-based risk score in the Cardiovascular Health Study using an aptamer-based proteomic platform. The proteomic risk score predicted incident hip fractures and improved hip fracture discrimination in two Trøndelag Health Study validation cohorts using the same aptamer-based platform. When transferred to an antibody-based proteomic platform in a UK Biobank validation cohort, the proteomic risk score was strongly associated with hip fractures (hazard ratio per s.d. increase, 1.64; 95% confidence interval 1.53–1.77). The proteomic risk score, but not available polygenic risk scores for fractures or bone mineral density, improved the C-index beyond the fracture risk assessment tool (FRAX), which integrates information from clinical risk factors (C-index, FRAX 0.735 versus FRAX + proteomic risk score 0.776). The developed proteomic risk score constitutes a new tool for stratifying patients according to hip fracture risk; however, its improvement in hip fracture discrimination is modest and its clinical utility beyond FRAX with information on femoral neck bone mineral density remains to be determined

    Interleukin-1 system gene polymorphisms are associated with fat mass in young men.

    No full text
    CONTEXT: There is growing evidence for interactions between the regulation of body fat and the immune system. Studies of knockout mice indicate that IL-1 has an antiobesity effect. OBJECTIVE: The objective of the study was to investigate our hypothesis that common polymorphisms of the IL-1 system, which are associated with IL-1 activity, also are associated with fat mass. DESIGN, SETTING, AND STUDY SUBJECTS: The Gothenburg Osteoporosis and Obesity Determinants (GOOD) study is a population-based cross-sectional study of 18- to 20-yr-old men (n = 1068), mostly Caucasian, from the Gothenburg area (Sweden). Three different polymorphisms, IL-1beta +3953 C/T, IL-1beta-31 T/C, and IL-1 receptor antagonist (IL-1RN) variable number tandem repeat of 86 bp, were investigated in relation to body fat mass. MAIN OUTCOME MEASURE: The main outcome measures were genotype distributions and their association with body fat mass in different compartments, measured with dual-energy x-ray absorptiometry. RESULTS: Carriers of the T variant (CT and TT) of the +3953 C to T (F(T) = 0.25) IL-1beta gene polymorphism had significantly lower total fat mass (P = 0.013) and also significantly reduced arm, leg, and trunk fat, compared with CC individuals. IL-1RN*2 carriers with two repeats of the IL-1RN variable number tandem repeat polymorphism had increased total fat (P = 0.036), serum leptin, and fat of trunk and arm as well as serum levels of IL-1RN and IL-1RN production ex vivo. The IL-1beta-31 polymorphism did not correlate with the fat measurements. CONCLUSIONS: The IL-1 system, recently shown to affect fat mass in experimental animals, contains gene polymorphisms that are associated with fat mass in young men
    corecore