25 research outputs found

    Local durability optimization of a large-scale direct methanol fuel cell: catalyst layer tuning for homogeneous operation and in-operando detection of localized hydrogen evolution

    Get PDF
    Lifetime limitations are still penalizing direct methanol fuel cell technology, otherwise outstandingly promising for sustainable portable power generation. Strong heterogeneous performance fading, related to uneven operating conditions, is known to be exacerbated in the upscaling process towards commercial applications, especially at local level. This work applies a localized optimization strategy, previously developed on lab-scale samples, on a commercial 180 cm2 membrane electrode assembly, analysing both current and potential distribution by means of a custom macro-segmented fuel cell provided with array of reference electrodes. Analysis based on local polarization curves and impedance spectroscopy demonstrates that water distribution, leading to local dehydration as well flooded areas, drives uneven operation and fading. Consequently, platinum loading at cathode electrode has been redistributed, sensibly improving current density heterogeneity and stability (voltage decay rate decreased from 148 to 53.8 μV h−1) over a 600 h degradation tests. Then, residual fading identified at outlet regions has been investigated by means of local electrodes potential analysis, demonstrating a highly uneven operation of both electrodes. This phenomenon is discussed as the evidence of localized hydrogen evolution, which is identified for the first time during nominal galvanostatic operation and suspected to contribute to uneven fading of components

    METHOD OF CONTROL OF A PEM FUEL OR ELECTROLYSIS CELL

    No full text
    A method of control of a PEM fuel or electrolysis cell with an extended lifetime, improved performance and uniform and stable operation is disclosed wherein a membrane electrode assembly (2) is provided with a gradient of one or more properties in combination with a modification of one or more control parameters of the cell during its long term operation

    Locally engineered PEM cells components with optimized operation for improved durability

    No full text
    La prestazione delle celle a combustibile è nota per non essere omogeneamente distribuita su tutta la superficie attiva del dispositivo stesso, bensì di presentare una distribuzione della densità di corrente localmente eterogenea; tale distribuzione tende inoltre a variare durante l’operazione, generalmente tendendo a rimpicciolire il dominio di maggiore operatività della cella, estremizzando di conseguenza le disuniformità operative. Il fenomeno determina una operatività sempre differente da zona a zona nel corso della vita utile del dispositivo, portando ad un invecchiamento non omogeneo dei suoi componenti: la zona maggiormente sollecitata della cella a combustibile, che tenderà ad invecchiare precocemente, potrebbe risultare limitante nei confronti della vita utile dell’intero dispositivo. La distribuzione della densità di corrente locale sulla superficie attiva della cella è determinata dall'interazione di una molteplicità di fattori influenzanti la prestazione quali geometria dei distributori, pressione parziale dei reagenti e dei prodotti e loro cross-over, quantità di acqua e conseguente stato di idratazione dei componenti, temperatura locale, che determinano dunque locali disuniformità nelle condizioni operative. Nonostante queste disuniformità sulle condizioni di operazione locale, i componenti normalmente impiegati in tali dispositivi sono realizzati con proprietà omogenee, ottimizzate sull'intera area operativa della cella, risultando dunque nell'operazione non ottimale di buona parte di tale superficie attiva. Il funzionamento in condizioni non ottimizzate locali, può determinare una accelerazione dei fenomeni di invecchiamento, determinando prestazioni inferiori, una minore stabilità e una non ottimale durata del dispositivo. L’invenzione in oggetto applicata porta a fornire una cella a combustibile con un gradiente nelle proprietà di uno o più suoi componenti, ad esempio è fornito un profilo parabolico nello spessore dell’elettrodo catalitico, con l’obiettivo di favorire le zone di ingresso e uscita dell’aria, operanti in condizioni non ottimali, a discapito della quantità di catalizzatore caricato nelle zone centrali della cella, operanti già in condizioni favorite, per non incrementare il carico catalitico complessivo. La distribuzione della densità di corrente è regolabile sulla superficie attiva della cella inoltre tramite l’ottimizzazione delle condizioni operative: l’incremento della densità di corrente prodotta nella zona di ingresso della cella ottenuto con l’aumento del carico catalitico locale, determina un accresciuto consumo di ossigeno localizzato in tale zona. Questo consegue in una diminuzione di prestazione della zona di uscita dell’aria, a questo punto operante mediamente con un reagente più povero di ossigeno e più carico di acqua del caso con componente tradizionale. La possibilità di incrementare leggermente la stechiometria catodica (agendo sulla portata di aria reagente) permette di regolare quanto la zona di uscita della cella possa contribuire alla produzione di corrente complessiva incrementando sensibilmente la sua prestazione locale. Al contrario, l’accresciuto carico catalitico e di ionomero nella zona di ingresso, che consegue in una maggior produzione di corrente locale e quindi di acqua (favorendo il meccanismo di auto-idratazione), infatti, permette che l’incremento di portata di aria non determini una perdita di prestazione locale dovuta all'incremento dell’effetto deidratante dell’aria stessa

    Large-Scale Migrations of Asylum Seekers

    No full text

    A locally resolved investigation on direct methanol fuel cell uneven components fading: Steady state and degradation local analysis

    No full text
    DMFC technology widespread commercialization is still hindered by durability issues. In literature, locally resolved measurements and post-mortem analyses reveal the onset of strong heterogeneous components fading, higher at air outlet region. Local aging mechanisms could be enhanced by DMFC cathode cycling operation in highly uneven presence of water. An innovative PEM macro-Segmented Fuel Cell (mSFC) setup has been developed to investigate DMFC local performance and degradation, coupling electrochemical and ex-situ analyses as TEM and XPS. An MEA based on highly graphitized carbon supported cathode electrode, confirmed in AST to be stable to cycling operation under flooded conditions, has been implemented in DMFC operation. 500 h local degradation test, despite 32% heterogenenous current density distribution, reveals homogeneous ECSA loss, consistent with homogeneous nanoparticles growth from 3.16 to 5.4 nm, which leads to 70% lower degradation rate (31.2 μV h−1) than the reference MEA. Water-related limitations, such as dehydration and flooding, are revealed to increase local performance loss by 25% and 100% respectively at cathode inlet and outlet regions, leading to current redistribution and uneven voltage loss. Hence, local optimization of MEA properties is foreseen to permit further important durability improvements

    A locally resolved investigation on direct methanol fuel cell uneven components fading: Local cathode catalyst layer tuning for homogeneous operation and reduced degradation rate

    No full text
    Durability issues of direct methanol fuel cell still hinder technology widespread commercialization; uneven aging of MEA components, generally harsher in air outlet region, is known to exasperate overall performance degradation. In a previous work, the authors selected a stable cathode electrode, demonstrated to fade homogenously: uneven water-related limitations, such as dehydration and flooding, were revealed to locally worsen performance at cathode inlet and outlet regions, leading to current redistribution. Aiming to reduce degradation rate, in this work homogeneous current distribution during operation is pursued by tuning MEA properties to meet local operating conditions. A properly improved 1D+1D physical model is used to support the development of a gradient MEA, featuring 1.6 mg cm−2 and 0.8 mg cm−2 of catalyst and ionomer respectively at inlet/outlet and center regions of cathode electrode. Tests based on custom macro-segmented cell demonstrated 55% more homogeneous current distribution, controllable during operation by means of cathode air stoichiometry. 500 h degradation test revealed 70% decreased degradation rate from uniform MEA (11 μV h−1) with a homogenous fading of performance. An 18% lower Pt nanoparticle growth at cathode outlet and limited ionomer degradation at cathode inlet were identified by ex-situ analyses (TEM and XPS), indicating locally mitigated fading mechanisms

    Local optimization of PEMFC and DMFC catalyst layers components for improved durability

    No full text
    Both proton exchange membrane (PEMFC) and direct methanol fuel cells (DMFC) technologies are limited in durability by a severe performance degradation determining a strongly localized heterogeneous components fading. Avoiding such localized early aging in critical areas could lead to improved durability for the overall device. A custom macro-Segmented fuel cell hardware, provided with local reference electrodes, has been developed to perform a detailed local investigation of performance and durability. The analysis revealed uneven current distribution during operation, most likely due to uneven reactants and products distribution, particularly related to components localized flooding or dehydration. Inhomogeneous performance distribution showed a strong impact on MEA heterogeneous fading, revealing analogies between the two technologies. Local optimization of catalyst layers formulation and operating protocol have been developed, assisted by modeling simulations, aiming to an homogeneous operation. Important improvements have been obtained on durability, demonstrated by local degradation testing and by post-mortem analysis of samples, confirming the validity of the methodology and the large scope for improvements still available
    corecore