31,335 research outputs found

    Aging, Emotion, Attention, and Binding in the Taboo Stroop Task: Data and Theories.

    Get PDF
    How does aging impact relations between emotion, memory, and attention? To address this question, young and older adults named the font colors of taboo and neutral words, some of which recurred in the same font color or screen location throughout two color-naming experiments. The results indicated longer color-naming response times (RTs) for taboo than neutral base-words (taboo Stroop interference); better incidental recognition of colors and locations consistently associated with taboo versus neutral words (taboo context-memory enhancement); and greater speed-up in color-naming RTs with repetition of color-consistent than color-inconsistent taboo words, but no analogous speed-up with repetition of location-consistent or location-inconsistent taboo words (the consistency type by repetition interaction for taboo words). All three phenomena remained constant with aging, consistent with the transmission deficit hypothesis and binding theory, where familiar emotional words trigger age-invariant reactions for prioritizing the binding of contextual features to the source of emotion. Binding theory also accurately predicted the interaction between consistency type and repetition for taboo words. However, one or more aspects of these phenomena failed to support the inhibition deficit hypothesis, resource capacity theory, or socio-emotional selectivity theory. We conclude that binding theory warrants further test in a range of paradigms, and that relations between aging and emotion, memory, and attention may depend on whether the task and stimuli trigger fast-reaction, involuntary binding processes, as in the taboo Stroop paradigm

    The application of time-series MODIS NDVI profiles for the acquisition of crop information across Afghanistan

    Get PDF
    We investigated and developed a prototype crop information system integrating 250 m Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) data with other available remotely sensed imagery, field data, and knowledge as part of a wider project monitoring opium and cereal crops. NDVI profiles exhibited large geographical variations in timing, height, shape, and number of peaks, with characteristics determined by underlying crop mixes, growth cycles, and agricultural practices. MODIS pixels were typically bigger than the field sizes, but profiles were indicators of crop phenology as the growth stages of the main first-cycle crops (opium poppy and cereals) were in phase. Profiles were used to investigate crop rotations, areas of newly exploited agriculture, localized variation in land management, and environmental factors such as water availability and disease. Near-real-time tracking of the current years’ profile provided forecasts of crop growth stages, early warning of drought, and mapping of affected areas. Derived data products and bulletins provided timely crop information to the UK Government and other international stakeholders to assist the development of counter-narcotic policy, plan activity, and measure progress. Results show the potential for transferring these techniques to other agricultural systems

    Survey and monitoring of opium poppy and wheat in Afghanistan: 2003-2009

    Get PDF
    An integrated application of remote-sensing technology was devised and applied in Afghanistan during 2003–2009 providing critical information on cereal and poppy cultivation and poppy eradication. The results influenced UK and international policy and counter-narcotics actions in Afghanistan

    Characterization and properties of controlled nucleation thermochemical deposited (CNTD) silicon carbide

    Get PDF
    The microstructure of controlled nucleation thermochemical deposition (CNTD) - SiC material was studied and the room temperature and high temperature bend strength and oxidation resistance was evaluated. Utilizing the CNTD process, ultrafine grained (0.01-0.1 mm) SiC was deposited on W - wires (0.5 mm diameter by 20 cm long) as substrates. The deposited SiC rods had superior surface smoothness and were without any macrocolumnar growth commonly found in conventional CVD material. At both room and high temperature (1200 - 1380 C), the CNTD - SiC exhibited bend strength approximately 200,000 psi (1380 MPa), several times higher than that of hot pressed, sintered, or CVD SiC. The excellent retention of strength at high temperature was attributed to the high purity and fine grain size of the SiC deposit and the apparent absence of grain growth at elevated temperatures. The rates of weight change for CNTD - SiC during oxidation were lower than for NC-203 (hot pressed SiC), higher than for GE's CVD - SiC, and considerably below those for HS-130 (hot pressed Si3N4). The high purity, fully dense, and stable grain size CNTD - SiC material shows potential for high temperature structural applications; however problem areas might include: scaling the process to make larger parts, deposition on removable substrates, and the possible residual tensile stress

    Experimental Design for the Gemini Planet Imager

    Full text link
    The Gemini Planet Imager (GPI) is a high performance adaptive optics system being designed and built for the Gemini Observatory. GPI is optimized for high contrast imaging, combining precise and accurate wavefront control, diffraction suppression, and a speckle-suppressing science camera with integral field and polarimetry capabilities. The primary science goal for GPI is the direct detection and characterization of young, Jovian-mass exoplanets. For plausible assumptions about the distribution of gas giant properties at large semi-major axes, GPI will be capable of detecting more than 10% of gas giants more massive than 0.5 M_J around stars younger than 100 Myr and nearer than 75 parsecs. For systems younger than 1 Gyr, gas giants more massive than 8 M_J and with semi-major axes greater than 15 AU are detected with completeness greater than 50%. A survey targeting young stars in the solar neighborhood will help determine the formation mechanism of gas giant planets by studying them at ages where planet brightness depends upon formation mechanism. Such a survey will also be sensitive to planets at semi-major axes comparable to the gas giants in our own solar system. In the simple, and idealized, situation in which planets formed by either the "hot-start" model of Burrows et al. (2003) or the core accretion model of Marley et al. (2007), a few tens of detected planets are sufficient to distinguish how planets form.Comment: 15 pages, 9 figures, revised after referee's comments and resubmitted to PAS

    Universality of the Small-Scale Dynamo Mechanism

    Full text link
    We quantify possible differences between turbulent dynamo action in the Sun and the dynamo action studied in idealized simulations. For this purpose we compare Fourier-space shell-to-shell energy transfer rates of three incrementally more complex dynamo simulations: an incompressible, periodic simulation driven by random flow, a simulation of Boussinesq convection, and a simulation of fully compressible convection that includes physics relevant to the near-surface layers of the Sun. For each of the simulations studied, we find that the dynamo mechanism is universal in the kinematic regime because energy is transferred from the turbulent flow to the magnetic field from wavenumbers in the inertial range of the energy spectrum. The addition of physical effects relevant to the solar near-surface layers, including stratification, compressibility, partial ionization, and radiative energy transport, does not appear to affect the nature of the dynamo mechanism. The role of inertial-range shear stresses in magnetic field amplification is independent from outer-scale circumstances, including forcing and stratification. Although the shell-to-shell energy transfer functions have similar properties to those seen in mean-flow driven dynamos in each simulation studied, the saturated states of these simulations are not universal because the flow at the driving wavenumbers is a significant source of energy for the magnetic field.Comment: 16 pages, 9 figures, accepted for publication in Ap

    A model of ant route navigation driven by scene familiarity

    Get PDF
    In this paper we propose a model of visually guided route navigation in ants that captures the known properties of real behaviour whilst retaining mechanistic simplicity and thus biological plausibility. For an ant, the coupling of movement and viewing direction means that a familiar view specifies a familiar direction of movement. Since the views experienced along a habitual route will be more familiar, route navigation can be re-cast as a search for familiar views. This search can be performed with a simple scanning routine, a behaviour that ants have been observed to perform. We test this proposed route navigation strategy in simulation, by learning a series of routes through visually cluttered environments consisting of objects that are only distinguishable as silhouettes against the sky. In the first instance we determine view familiarity by exhaustive comparison with the set of views experienced during training. In further experiments we train an artificial neural network to perform familiarity discrimination using the training views. Our results indicate that, not only is the approach successful, but also that the routes that are learnt show many of the characteristics of the routes of desert ants. As such, we believe the model represents the only detailed and complete model of insect route guidance to date. What is more, the model provides a general demonstration that visually guided routes can be produced with parsimonious mechanisms that do not specify when or what to learn, nor separate routes into sequences of waypoints

    Supersymmetric Homogeneous Quantum Cosmologies Coupled to a Scalar Field

    Get PDF
    Recent work on N=2N=2 supersymmetric Bianchi type IX cosmologies coupled to a scalar field is extended to a general treatment of homogeneous quantum cosmologies with explicitely solvable momentum constraints, i.e. Bianchi types I, II, VII, VIII besides the Bianchi type IX, and special cases, namely the Friedmann universes, the Kantowski-Sachs space, and Taub-NUT space. Besides the earlier explicit solution of the Wheeler DeWitt equation for Bianchi type IX, describing a virtual wormhole fluctuation, an additional explicit solution is given and identified with the `no-boundary state'.Comment: 23 PAGE

    Infrared Surface Brightness Fluctuations of the Coma Elliptical NGC 4874 and the Value of the Hubble Constant

    Get PDF
    We have used the Keck I Telescope to measure K-band surface brightness fluctuations (SBFs) of NGC 4874, the dominant elliptical galaxy in the Coma cluster. We use deep HST WFPC2 optical imaging to account for the contamination due to faint globular clusters and improved analysis techniques to derive measurements of the SBF apparent magnitude. Using a new SBF calibration which accounts for the dependence of K-band SBFs on the integrated color of the stellar population, we measure a distance modulus of 34.99+/-0.21 mag (100+/-10 Mpc) for the Coma cluster. The resulting value of the Hubble constant is 71+/-8 km/s/Mpc, not including any systematic error in the HST Cepheid distance scale.Comment: ApJ Letters, in press. Uses emulateapj5.st
    • …
    corecore