758 research outputs found

    Centers for independent living and transition-age youth: Empowerment and self-determination

    Get PDF
    This is the published version. Copyright 2004 IOS PressAbstract. A primary function of centers for independent living is to empower individuals with disabilities and to support greater independence. These functions overlap with the purpose of transition planning for youth with disabilities, and it is increasingly evident that CILs can play an important role in such transition services. This article discusses the potential role of CILs in transition services for youth with disabilities, particularly in promoting self-determination, and provides an example of a program that CILs could replicate to achieve such outcomes

    VEGF(164)-mediated inflammation is required for pathological, but not physiological, ischemia-induced retinal neovascularization

    Get PDF
    Hypoxia-induced VEGF governs both physiological retinal vascular development and pathological retinal neovascularization. In the current paper, the mechanisms of physiological and pathological neovascularization are compared and contrasted. During pathological neovascularization, both the absolute and relative expression levels for VEGF(164) increased to a greater degree than during physiological neovascularization. Furthermore, extensive leukocyte adhesion was observed at the leading edge of pathological, but not physiological, neovascularization. When a VEGF(164)-specific neutralizing aptamer was administered, it potently suppressed the leukocyte adhesion and pathological neovascularization, whereas it had little or no effect on physiological neovascularization. In parallel experiments, genetically altered VEGF(164)-deficient (VEGF(120/188)) mice exhibited no difference in physiological neovascularization when compared with wild-type (VEGF(+/+)) controls. In contrast, administration of a VEGFk-1/Fc fusion protein, which blocks all VEGF isoforms, led to significant suppression of both pathological and physiological neovascularization. In addition, the targeted inactivation of monocyte lineage cells with clodronate-liposomes led to the suppression of pathological neovascularization. Conversely, the blockade of T lymphocyte-mediated immune responses with an anti-CD2 antibody exacerbated pathological neovascularization. These data highlight important molecular and cellular differences between physiological and pathological retinal neovascularization. During pathological neovascularization, VEGF(164) selectively induces inflammation and cellular immunity. These processes provide positive and negative angiogenic regulation, respectively. Together, new therapeutic approaches for selectively targeting pathological, but not physiological, retinal neovascularization are outlined

    Aminoimidazole Carboxamide Ribonucleotide (AICAR) Inhibits the Growth of Retinoblastoma In Vivo by Decreasing Angiogenesis and Inducing Apoptosis

    Get PDF
    5-Aminoimidazole-4-carboxamide-1-β-4-ribofuranoside (AICAR), an analog of AMP is widely used as an activator of AMP-kinase (AMPK), a protein that regulates the responses of the cell to energy change. Recently, we showed that AICAR-induced AMPK activation inhibits the growth of retinoblastoma cells in vitro by decreasing cyclins and by inducing apoptosis and S-phase arrest. In this study, we investigated the effects of AMPK activator AICAR on the growth of retinoblastoma in vivo. Intraperitoneal injection of AICAR resulted in 48% growth inhibition of Y79 retinoblastoma cell tumors in mice. Tumors isolated from mice treated with AICAR had decreased expression of Ki67 and increased apoptotic cells (TUNEL positive) compared with the control. In addition, AICAR treatment suppressed significantly tumor vessel density and macrophage infiltration. We also showed that AICAR administration resulted in AMPK activation and mTOR pathway inhibition. Paradoxically observed down-regulation of p21, which indicates that p21 may have a novel function of an oncogene in retinoblastoma tumor. Our results indicate that AICAR treatment inhibited the growth of retinoblastoma tumor in vivo via AMPK/mTORC1 pathway and by apoptogenic, anti-proliferative, anti-angiogenesis mechanism. AICAR is a promising novel non-chemotherapeutic drug that may be effective as an adjuvant in treating Retinoblastoma

    Targeting the YAP/TAZ pathway in uveal and conjunctival melanoma with verteporfin

    Get PDF
    PURPOSE. The purpose of this study was to determine whether YAP/TAZ activation in uveal melanoma (UM) and the susceptibility of melanoma cell lines to YAP/TAZ inhibition by verteporfin (VP) is related to the tumor's genetic background.METHODS. Characteristics of 144 patients with enucleated UM were analyzed together with mRNA expression levels of YAP/TAZ-related genes (80 patients from the The Cancer Genome Atlas [TCGA] project and 64 patients from Leiden, The Netherlands). VP was administered to cell lines 92.1, OMM1, Mel270, XMP46, and MM28 (UM), CRMM1 and CRMM2 (conjunctival melanoma), and OCM3 (cutaneous melanoma). Viability, growth speed, and expression of YAP1-related proteins were assessed.RESULTS. In TCGA data, high expression of YAP1 and WWTR1 correlated with the presence of monosomy 3 (P = 0.009 and P < 0.001, respectively) and BAP1-loss (P = 0.003 and P = 0.001, respectively) in the primary UM; metastasis development correlated with higher expression of YAP1 (P = 0.05) and WWTR1 (P = 0.003). In Leiden data, downstream transcription factor TEAD4 was increased in cases with M3/BAP1-loss (P = 0.002 and P = 0.006) and related to metastasis (P = 0.004). UM cell lines 92.1, OMM1, and Mel270 (GNAQ/11-mutation, BAP1-positive) and the fast-growing cell line OCM3 (BRAF-mutation) showed decreased proliferation after exposure to VP. Two slow-growing UM cell lines XMP46 and MM28 (GNAQ/11-mutation, BAP1-negative) were not sensitive to VP, and neither were the two conjunctival melanoma cell lines (BRAF/NRAS-mutation).CONCLUSIONS. High risk UM showed an increased expression of YAP/TAZ-related genes. Although most UM cell lines responded in vitro to VP, BAP1-negative and conjunctival melanoma cell lines did not. Not only the mutational background, but also cell growth rate is an important predictor of response to YAP/TAZ inhibition by VP.Ophthalmic researc

    VEGF\u3csub\u3e164\u3c/sub\u3e-Mediated Inflammation is Required for Pathological, but Not Physiological, Ischemia-Induced Retinal Neovascularization

    Get PDF
    Hypoxia-induced VEGF governs both physiological retinal vascular development and pathological retinal neovascularization. In the current paper, the mechanisms of physiological and pathological neovascularization are compared and contrasted. During pathological neovascularization, both the absolute and relative expression levels for VEGF164 increased to a greater degree than during physiological neovascularization. Furthermore, extensive leukocyte adhesion was observed at the leading edge of pathological, but not physiological, neovascularization. When a VEGF164-specific neutralizing aptamer was administered, it potently suppressed the leukocyte adhesion and pathological neovascularization, whereas it had little or no effect on physiological neovascularization. In parallel experiments, genetically altered VEGF164-deficient (VEGF120/188) mice exhibited no difference in physiological neovascularization when compared with wild-type (VEGF+/+) controls. In contrast, administration of a VEGFR-1/Fc fusion protein, which blocks all VEGF isoforms, led to significant suppression of both pathological and physiological neovascularization. In addition, the targeted inactivation of monocyte lineage cells with clodronate-liposomes led to the suppression of pathological neovascularization. Conversely, the blockade of T lymphocyte–mediated immune responses with an anti-CD2 antibody exacerbated pathological neovascularization. These data highlight important molecular and cellular differences between physiological and pathological retinal neovascularization. During pathological neovascularization, VEGF164 selectively induces inflammation and cellular immunity. These processes provide positive and negative angiogenic regulation, respectively. Together, new therapeutic approaches for selectively targeting pathological, but not physiological, retinal neovascularization are outlined

    Cancer-selective antiproliferative activity is a general property of some G-rich oligodeoxynucleotides

    Get PDF
    Oligodeoxynucleotide libraries containing randomly incorporated bases are used to generate DNA aptamers by systematic evolution of ligands by exponential enrichment (SELEX). We predicted that combinatorial libraries with alternative base compositions might have innate properties different from the standard library containing equimolar A + C + G + T bases. In particular, we hypothesized that G-rich libraries would contain a higher proportion of quadruplex-forming sequences, which may impart desirable qualities, such as increased nuclease resistance and enhanced cellular uptake. Here, we report on 11 synthetic oligodeoxynucleotide libraries of various base combinations and lengths, with regard to their circular dichroism, stability in serum-containing medium, cellular uptake, protein binding and antiproliferative activity. Unexpectedly, we found that some G-rich libraries (composed of G + T or G + C nucleotides) strongly inhibited cancer cell growth while sparing non-malignant cells. These libraries had spectral features consistent with G-quadruplex formation, were significantly more stable in serum than inactive libraries and showed enhanced cellular uptake. Active libraries generally had strong protein binding, while the pattern of protein binding suggested that G/T and G/C libraries have distinct mechanisms of action. In conclusion, cancer-selective antiproliferative activity may be a general feature of certain G-rich oligodeoxynucleotides and is associated with quadruplex formation, nuclease resistance, efficient cellular uptake and protein binding

    Aptamer-based multiplexed proteomic technology for biomarker discovery

    Get PDF
    Interrogation of the human proteome in a highly multiplexed and efficient manner remains a coveted and challenging goal in biology. We present a new aptamer-based proteomic technology for biomarker discovery capable of simultaneously measuring thousands of proteins from small sample volumes (15 [mu]L of serum or plasma). Our current assay allows us to measure ~800 proteins with very low limits of detection (1 pM average), 7 logs of overall dynamic range, and 5% average coefficient of variation. This technology is enabled by a new generation of aptamers that contain chemically modified nucleotides, which greatly expand the physicochemical diversity of the large randomized nucleic acid libraries from which the aptamers are selected. Proteins in complex matrices such as plasma are measured with a process that transforms a signature of protein concentrations into a corresponding DNA aptamer concentration signature, which is then quantified with a DNA microarray. In essence, our assay takes advantage of the dual nature of aptamers as both folded binding entities with defined shapes and unique sequences recognizable by specific hybridization probes. To demonstrate the utility of our proteomics biomarker discovery technology, we applied it to a clinical study of chronic kidney disease (CKD). We identified two well known CKD biomarkers as well as an additional 58 potential CKD biomarkers. These results demonstrate the potential utility of our technology to discover unique protein signatures characteristic of various disease states. More generally, we describe a versatile and powerful tool that allows large-scale comparison of proteome profiles among discrete populations. This unbiased and highly multiplexed search engine will enable the discovery of novel biomarkers in a manner that is unencumbered by our incomplete knowledge of biology, thereby helping to advance the next generation of evidence-based medicine

    Utilizing Targeted Gene Therapy with Nanoparticles Binding Alpha v Beta 3 for Imaging and Treating Choroidal Neovascularization

    Get PDF
    Purpose: The integrin αvβ3 is differentially expressed on neovascular endothelial cells. We investigated whether a novel intravenously injectable αvβ3 integrin-ligand coupled nanoparticle (NP) can target choroidal neovascular membranes (CNV) for imaging and targeted gene therapy. Methods: CNV lesions were induced in rats using laser photocoagulation. The utility of NP for in vivo imaging and gene delivery was evaluated by coupling the NP with a green fluorescing protein plasmid (NP-GFPg). Rhodamine labeling (Rd-NP) was used to localize NP in choroidal flatmounts. Rd-NP-GFPg particles were injected intravenously on weeks 1, 2, or 3. In the treatment arm, rats received NP containing a dominant negative Raf mutant gene (NP-ATPμ-Raf) on days 1, 3, and 5. The change in CNV size and leakage, and TUNEL positive cells were quantified. Results: GFP plasmid expression was seen in vivo up to 3 days after injection of Rd-NP-GFPg. Choroidal flatmounts confirmed the localization of the NP and the expression of GFP plasmid in the CNV. Treating the CNV with NP-ATPμ-Raf decreased the CNV size by 42% (P<0.001). OCT analysis revealed that the reduction of CNV size started on day 5 and reached statistical significance by day 7. Fluorescein angiography grading showed significantly less leakage in the treated CNV (P<0.001). There were significantly more apoptotic (TUNEL-positive) nuclei in the treated CNV. Conclusion: Systemic administration of αvβ3 targeted NP can be used to label the abnormal blood vessels of CNV for imaging. Targeted gene delivery with NP-ATPμ-Raf leads to a reduction in size and leakage of the CNV by induction of apoptosis in the CNV
    corecore