230 research outputs found

    The Resonance Peak in Sr2_2RuO4_4: Signature of Spin Triplet Pairing

    Full text link
    We study the dynamical spin susceptibility, χ(q,ω)\chi({\bf q}, \omega), in the normal and superconducting state of Sr2_2RuO4_4. In the normal state, we find a peak in the vicinity of Qi(0.72π,0.72π){\bf Q}_i\simeq (0.72\pi,0.72\pi) in agreement with recent inelastic neutron scattering (INS) experiments. We predict that for spin triplet pairing in the superconducting state a {\it resonance peak} appears in the out-of-plane component of χ\chi, but is absent in the in-plane component. In contrast, no resonance peak is expected for spin singlet pairing.Comment: 4 pages, 4 figures, final versio

    Innovationssystem und Gründungsgeschehen in Jena: Erste Erkenntnisse einer Unternehmensbefragung

    Get PDF
    Das Max-Planck-Institut zur Erforschung von Wirtschaftssystemen Jena führte im Sommer 2002 in Kooperation mit dem Lehrstuhl für Mikroökonomik der Friedrich-Schiller-Universität Jena eine Befragung der in Jena ansässigen Unternehmen durch. Die wichtigsten bereits erkennbaren Ergebnisse dieser Befragung werden in dieser Arbeit zusammengefasst. Das Gründungsgeschehen in Jena spielte sich in zwei Wellen ab. Die erste, die 1991 ihren Höhepunkt erreichte, war vermutlich wiedervereinigungsbedingt. Die zweite Gründungswelle erreichte im Jahr 1999 ihren Höhepunkt. Gründungsentscheidung und die Wahl des Standorts Jena werden von folgenden Standort-Faktoren positiv beeinflusst: der Verfüugbarkeit qualifizierter Arbeitskräfte, dem Vorhandensein wichtiger anderer Firmen, dem sozialen Netzwerk der Gründer, den Hochschulen und dem positiven Image der Stadt Jena. Neben der Bedeutung von Spin-offs und lokalen Netzwerken zeigt sich eine starke innere Verflechtung bei der Wissensgenerierung in Form von Forschungskooperationen und bei der Mitarbeiterwahl.

    Potentials of on-line repositioning based on implanted fiducial markers and electronic portal imaging in prostate cancer radiotherapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To evaluate the benefit of an on-line correction protocol based on implanted markers and weekly portal imaging in external beam radiotherapy of prostate cancer. To compare the use of bony anatomy versus implanted markers for calculation of setup-error plus/minus prostate movement. To estimate the error reduction (and the corresponding margin reduction) by reducing the total error to 3 mm once a week, three times per week or every treatment day.</p> <p>Methods</p> <p>23 patients had three to five, 2.5 mm Ø spherical gold markers transrectally inserted into the prostate before radiotherapy. Verification and correction of treatment position by analysis of orthogonal portal images was performed on a weekly basis. We registered with respect to the bony contours (setup error) and to the marker position (prostate motion) and determined the total error. The systematic and random errors are specified. Positioning correction was applied with a threshold of 5 mm displacement.</p> <p>Results</p> <p>The systematic error (1 standard deviation [SD]) in left-right (LR), superior-inferior (SI) and anterior-posterior (AP) direction contributes for the setup 1.6 mm, 2.1 mm and 2.4 mm and for prostate motion 1.1 mm, 1.9 mm and 2.3 mm. The random error (1 SD) in LR, SI and AP direction amounts for the setup 2.3 mm, 2.7 mm and 2.7 mm and for motion 1.4 mm, 2.3 mm and 2.7 mm. The resulting total error suggests margins of 7.0 mm (LR), 9.5 mm (SI) and 9.5 mm (AP) between clinical target volume (CTV) and planning target volume (PTV). After correction once a week the margins were lowered to 6.7, 8.2 and 8.7 mm and furthermore down to 4.9, 5.1 and 4.8 mm after correcting every treatment day.</p> <p>Conclusion</p> <p>Prostate movement relative to adjacent bony anatomy is significant and contributes substantially to the target position variability. Performing on-line setup correction using implanted radioopaque markers and megavoltage radiography results in reduced treatment margins depending on the online imaging protocol (once a week or more frequently).</p

    Affirmative and silent cyber coverage in traditional insurance policies : Qualitative content analysis of selected insurance products from the German insurance market

    Get PDF
    This paper examines the design of affirmative and silent coverage in view of the cyber risks in traditional insurance policies for select product lines on the German market. Given the novelty and complexity of the topic and the insufficient coverage in the literature, we use two different sources. We analysed the general insurance terms and conditions of different traditional insurance lines using Mayring’s qualitative content analysis. Also, we conducted interviews with experts from the German insurance industry to evaluate how insurers understand their silent cyber exposures, and what measures they take to deal with this new exposure. The study shows a considerable cyber liability risk potential for insurers in the considered insurance lines. This arises from the affirmative as well as silent cover inclusions and exclusions for cyber risks, which result from imprecise wordings of insurance clauses and insufficient descriptions of the contractually specified scope of the insurance coverage

    Interpenetrating Self-Supporting Networks from Anisotropic Semiconductor Nanoparticles and Noble Metal Nanowires

    Get PDF
    In this work, a new type of multicomponent nanostructures is introduced by forming interpenetrating networks of two different nanomaterials. In detail, gel networks from semiconductor nanorods are interpenetrated by Au nanowires. Two different types of gelling agents, namely S2− and Yb3+, are employed to trigger the network formation. The structural and electrochemical properties of the resulting materials are discussed. (Photo)electrochemical measurements are performed on the structures to compare the materials in terms of their conductivity as well as their efficiency in converting photonic energy to electrical energy. The new type of CdSe/CdS:Au nanostructure gelled with S2− shows one order of magnitude higher photocurrent than the system gelled with Yb3+. Moreover, the introduction of Au nanowires exhibit a photocurrent which is two orders of magnitudes higher than in samples without Au nanowires

    Orientation distributions of vacuum-deposited organic emitters revealed by single-molecule microscopy

    Get PDF
    This work was supported by the Volkswagen Foundation (No. 93404) and the DFG-funded Research Training Group “Template-Designed Organic Electronics (TIDE)”, RTG2591. M.C.G. acknowledges support from the Alexander von Humboldt Stiftung through the Humboldt-Professorship. A.M. acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under Marie Skłodowska-Curie grant agreement No. 101023743 (PolDev).The orientation of luminescent molecules in organic light-emitting diodes strongly influences device performance. However, our understanding of the factors controlling emitter orientation is limited as current measurements only provide ensemble-averaged orientation values. Here, we use single-molecule imaging to measure the transition dipole orientation of individual emitter molecules in a state-of-the-art thermally evaporated host and thereby obtain complete orientation distributions of the hyperfluorescence-terminal emitter C545T. We achieve this by realizing ultra-low doping concentrations (10−6 wt%) of C545T and minimising background levels to reliably measure its photoluminescence. This approach yields the orientation distributions of >1000 individual emitter molecules in a system relevant to vacuum-processed devices. Analysis of solution- and vacuum-processed systems reveals that the orientation distributions strongly depend on the nanoscale environment of the emitter. This work opens the door to attaining unprecedented information on the factors that determine emitter orientation in current and future material systems for organic light-emitting devices.Publisher PDFPeer reviewe

    Differentially Testing Soundness and Precision of Program Analyzers

    Full text link
    In the last decades, numerous program analyzers have been developed both by academia and industry. Despite their abundance however, there is currently no systematic way of comparing the effectiveness of different analyzers on arbitrary code. In this paper, we present the first automated technique for differentially testing soundness and precision of program analyzers. We used our technique to compare six mature, state-of-the art analyzers on tens of thousands of automatically generated benchmarks. Our technique detected soundness and precision issues in most analyzers, and we evaluated the implications of these issues to both designers and users of program analyzers

    Morphological Control Over Gel Structures of Mixed Semiconductor-Metal Nanoparticle Gel Networks with Multivalent Cations

    Get PDF
    In this work, the influence of two different types of cations on the gel formation and structure of mixed gel networks comprised of semiconductor (namely CdSe/CdS nanorods NR) and Au nanoparticles (NP) as well as on the respective monocomponent gels is investigated. Heteroassemblies built from colloidal building blocks are usually prepared by ligand removal or cross-linking, thus, both the surface chemistry and the destabilising agent play an essential role in the gelation process. Due to the diversity of the composition, morphology, and optical properties of the nanoparticles, a versatile route to fabricate functional heteroassemblies is of great demand. In the present work, the optics, morphology, and gelation mechanism of pure semiconductor and noble metal as well as their mixed nanoparticle gel networks are revealed. The influence of the gelation agents (bivalent and trivalent cations) on the structure-property correlation is elucidated by photoluminescence, X-ray photoelectron spectroscopy, and electron microscopy measurements. The selection of cations drastically influences the nano- and microstructure of the prepared gel network structures driven by the affinity of the cations to the ligands and the nanoparticle surface. This gelation technique provides a new platform to control the formation of porous assemblies based on semiconductor and metal nanoparticles
    corecore