29 research outputs found

    A Novel β€˜Gene Insertion/Marker Out’ (GIMO) Method for Transgene Expression and Gene Complementation in Rodent Malaria Parasites

    Get PDF
    Research on the biology of malaria parasites has greatly benefited from the application of reverse genetic technologies, in particular through the analysis of gene deletion mutants and studies on transgenic parasites that express heterologous or mutated proteins. However, transfection in Plasmodium is limited by the paucity of drug-selectable markers that hampers subsequent genetic modification of the same mutant. We report the development of a novel β€˜gene insertion/marker out’ (GIMO) method for two rodent malaria parasites, which uses negative selection to rapidly generate transgenic mutants ready for subsequent modifications. We have created reference mother lines for both P. berghei ANKA and P. yoelii 17XNL that serve as recipient parasites for GIMO-transfection. Compared to existing protocols GIMO-transfection greatly simplifies and speeds up the generation of mutants expressing heterologous proteins, free of drug-resistance genes, and requires far fewer laboratory animals. In addition we demonstrate that GIMO-transfection is also a simple and fast method for genetic complementation of mutants with a gene deletion or mutation. The implementation of GIMO-transfection procedures should greatly enhance Plasmodium reverse-genetic research

    Exoerythrocytic Plasmodium Parasites Secrete a Cysteine Protease Inhibitor Involved in Sporozoite Invasion and Capable of Blocking Cell Death of Host Hepatocytes

    Get PDF
    Plasmodium parasites must control cysteine protease activity that is critical for hepatocyte invasion by sporozoites, liver stage development, host cell survival and merozoite liberation. Here we show that exoerythrocytic P. berghei parasites express a potent cysteine protease inhibitor (PbICP, P. berghei inhibitor of cysteine proteases). We provide evidence that it has an important function in sporozoite invasion and is capable of blocking hepatocyte cell death. Pre-incubation with specific anti-PbICP antiserum significantly decreased the ability of sporozoites to infect hepatocytes and expression of PbICP in mammalian cells protects them against peroxide- and camptothecin-induced cell death. PbICP is secreted by sporozoites prior to and after hepatocyte invasion, localizes to the parasitophorous vacuole as well as to the parasite cytoplasm in the schizont stage and is released into the host cell cytoplasm at the end of the liver stage. Like its homolog falstatin/PfICP in P. falciparum, PbICP consists of a classical N-terminal signal peptide, a long N-terminal extension region and a chagasin-like C-terminal domain. In exoerythrocytic parasites, PbICP is posttranslationally processed, leading to liberation of the C-terminal chagasin-like domain. Biochemical analysis has revealed that both full-length PbICP and the truncated C-terminal domain are very potent inhibitors of cathepsin L-like host and parasite cysteine proteases. The results presented in this study suggest that the inhibitor plays an important role in sporozoite invasion of host cells and in parasite survival during liver stage development by inhibiting host cell proteases involved in programmed cell death

    Sequestration and Tissue Accumulation of Human Malaria Parasites: Can We Learn Anything from Rodent Models of Malaria?

    Get PDF
    The sequestration of Plasmodium falciparum–infected red blood cells (irbcs) in the microvasculature of organs is associated with severe disease; correspondingly, the molecular basis of irbc adherence is an active area of study. In contrast to P. falciparum, much less is known about sequestration in other Plasmodium parasites, including those species that are used as models to study severe malaria. Here, we review the cytoadherence properties of irbcs of the rodent parasite Plasmodium berghei ANKA, where schizonts demonstrate a clear sequestration phenotype. Real-time in vivo imaging of transgenic P. berghei parasites in rodents has revealed a CD36-dependent sequestration in lungs and adipose tissue. In the absence of direct orthologs of the P. falciparum proteins that mediate binding to human CD36, the P. berghei proteins and/or mechanisms of rodent CD36 binding are as yet unknown. In addition to CD36-dependent schizont sequestration, irbcs accumulate during severe disease in different tissues, including the brain. The role of sequestration is discussed in the context of disease as are the general (dis)similarities of P. berghei and P. falciparum sequestration

    CD36 and Fyn kinase mediate malaria-induced lung endothelial barrier dysfunction in mice infected with Plasmodium berghei.

    Get PDF
    PMC3744507Severe malaria can trigger acute lung injury characterized by pulmonary edema resulting from increased endothelial permeability. However, the mechanism through which lung fluid conductance is altered during malaria remains unclear. To define the role that the scavenger receptor CD36 may play in mediating this response, C57BL/6J (WT) and CD36-/- mice were infected with P. berghei ANKA and monitored for changes in pulmonary endothelial barrier function employing an isolated perfused lung system. WT lungs demonstrated a >10-fold increase in two measures of paracellular fluid conductance and a decrease in the albumin reflection coefficient (Οƒalb) compared to control lungs indicating a loss of barrier function. In contrast, malaria-infected CD36-/- mice had near normal fluid conductance but a similar reduction in Οƒalb. In WT mice, lung sequestered iRBCs demonstrated production of reactive oxygen species (ROS). To determine whether knockout of CD36 could protect against ROS-induced endothelial barrier dysfunction, mouse lung microvascular endothelial monolayers (MLMVEC) from WT and CD36-/- mice were exposed to H2O2. Unlike WT monolayers, which showed dose-dependent decreases in transendothelial electrical resistance (TER) from H2O2 indicating loss of barrier function, CD36-/- MLMVEC demonstrated dose-dependent increases in TER. The differences between responses in WT and CD36-/- endothelial cells correlated with important differences in the intracellular compartmentalization of the CD36-associated Fyn kinase. Malaria infection increased total lung Fyn levels in CD36-/- lungs compared to WT, but this increase was due to elevated production of the inactive form of Fyn further suggesting a dysregulation of Fyn-mediated signaling. The importance of Fyn in CD36-dependent endothelial signaling was confirmed using in vitro Fyn knockdown as well as Fyn-/- mice, which were also protected from H2O2- and malaria-induced lung endothelial leak, respectively. Our results demonstrate that CD36 and Fyn kinase are critical mediators of the increased lung endothelial fluid conductance caused by malaria infection.JH Libraries Open Access Fun

    The cortex-based alignment approach to TMS coil positioning

    Get PDF
    TMS allows noninvasive manipulation of brain activity in healthy participants and patients. The effectiveness of TMS experiments critically depends on precise TMS coil positioning, which is best for most brain areas when a frameless stereotactic system is used to target activation foci based on individual fMRI data. From a purely scientific perspective, individual fMRI-guided TMS is thus the method of choice to ensure optimal TMS efficiency. Yet, from a more practical perspective, such individual functional data are not always available, and therefore alternative TMS coil positioning approaches are often applied, for example, based on functional group data reported in Talairach coordinates. We here propose a novel method for TMS coil positioning that is based on functional group data, yet only requires individual anatomical data. We used cortex-based alignment (CBA) to transform individual anatomical data to an atlas brain that includes probabilistic group maps of two functional regions (FEF and hMT+/V5). Then, these functional group maps were back-transformed to the individual brain anatomy, preserving functional–anatomical correspondence. As a proof of principle, the resulting CBA-based functional targets in individual brain space were compared with individual FEF and hMT+/V5 hotspots as conventionally localized with individual fMRI data and with targets based on Talairach coordinates as commonly done in TMS research in case only individual anatomical data are available. The CBA-based approach significantly improved localization of functional brain areas compared with traditional Talairach-based targeting. Given the widespread availability of CBA schemes and preexisting functional group data, the proposed procedure is easy to implement and at no additional measurement costs. However, the accuracy of individual fMRI-guided TMS remains unparalleled, and the CBA-based approach should only be the method of choice when individual functional data cannot be obtained or experimental factors argue against it

    Organelle segregation into Plasmodium liver stage merozoites

    No full text
    The liver stage of the Plasmodium parasite remains one of the most promising targets for intervention against malaria as it is clinically silent, precedes the symptomatic blood stage and represents a bottleneck in the parasite life cycle. However, many aspects of the development of the parasite during this stage are far from understood. During the liver stage, the parasite undergoes extensive replication, forming tens of thousands of infectious merozoites from each invading sporozoite. This implies a very efficient and accurate process of cytokinesis and thus also of organelle development and segregation. We have generated for the first time Plasmodium berghei double-fluorescent parasite lines, allowing visualization of the apicoplast, mitochondria and nuclei in live liver stage parasites. Using these we have seen that in parallel with nuclear division, the apicoplast and mitochondrion become two extensively branched and intertwining structures. The organelles then undergo impressive morphological and positional changes prior to cell division. To form merozoites, the parasite undergoes cytokinesis and the complex process of organelle development and segregation into the forming daughter merozoites could be analysed in detail using the newly generated transgenic parasites

    The ARGUS electron-photon calorimeter. Pt. 3 Electron-hadron separation

    No full text
    Copy held by FIZ Karlsruhe; available from UB/TIB Hannover / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman
    corecore