101 research outputs found
Methylated free-circulating HPP1 DNA is an early response marker in patients with metastatic colorectal cancer
Detection of methylated free-circulating DNA (mfcDNA) for hyperplastic polyposis 1 (HPP1) in blood is correlated with a poor prognosis for patients with metastatic colorectal cancers (mCRC). Here, we analyzed the plasma levels of HPP1 mfcDNA in mCRC patients treated with a combination therapy containing a fluoropyrimidine, oxaliplatin and bevacizumab to test whether HPP1 mfcDNA is a suitable prognostic and response biomarker. From 467 patients of the prospective clinical study AIO-KRK-0207, mfcDNA was isolated from plasma samples at different time points and bisulfite-treated mfcDNA was quantified using methylation specific PCR. About 337 of 467 patients had detectable levels for HPP1 mfcDNA before start of treatment. The detection was significantly correlated with poorer overall survival (OS) (HR = 1.86; 95%CI 1.37-2.53). About 2-3 weeks after the first administration of combination chemotherapy, HPP1 mfcDNA was reduced to non-detectable levels in 167 of 337 patients. These patients showed a better OS compared with patients with continued detection of HPP1 mfcDNA (HR HPP1(sample 1: pos/ sample 2: neg) vs. HPP1(neg/neg) = 1.41; 95%CI 1.00-2.01, HPP1(neg,pos/pos) vs. HPP1(neg/neg) = 2.60; 95%CI 1.86-3.64). Receiver operating characteristic analysis demonstrated that HPP1 mfcDNA discriminates well between patients who do (not) respond to therapy according to the radiological staging after 12 or 24 weeks (AUC = 0.77 or 0.71, respectively). Detection of HPP1 mfcDNA can be used as a prognostic marker and an early marker for response (as early as 3-4 weeks after start of treatment compared with radiological staging after 12 or 24 weeks) to identify patients who will likely benefit from a combination chemotherapy with bevacizumab.info:eu-repo/semantics/publishedVersio
Phase I study of epirubicin, cisplatin and capecitabine plus matuzumab in previously untreated patients with advanced oesophagogastric cancer
To evaluate the safety, tolerability, efficacy, pharmacokinetics and pharmacodynamics of the humanised antiepidermal growth factor receptor monoclonal antibody matuzumab combined with epirubicin, cisplatin and capecitabine (ECX) in patients as first-line treatment for advanced oesophagogastric cancer that express epidermal growth factor receptor (EGFR). This was a phase I dose escalation study of matuzumab at 400 and 800 mg weekly and 1200 mg every 3 weeks combined with ECX (epirubicin 50 mg m−2, cisplatin 60 mg m−2 on day 1 and capecitabine 1000 mg m−2 daily). Patients were treated until disease progression, unacceptable toxicity or for a maximum of eight cycles. Twenty-one patients were treated with matuzumab at three different dose levels (DLs) combined with ECX. The main dose-limiting toxicity (DLT) was grade 3 lethargy at 1200 mg matuzumab every 3 weeks and thus 800 mg matuzumab weekly was the maximum-tolerated dose (MTD). Other common toxicities included rash, nausea, stomatitis and diarrhoea. Pharmacokinetic evaluation demonstrated that the coadministration of ECX did not alter the exposure of matuzumab. Pharmacodynamic studies on skin biopsies demonstrated inhibition of the EGFR pathway. Objective response rates of 65% (95% confidence interval (CI): 43–82), disease stabilisation of 25% (95% CI: 11–47) and a disease control rate (CR+PR+SD) of 90% were achieved overall. The MTD of matuzumab in combination with ECX was 800 mg weekly, and at this DL it was well-tolerated and showed encouraging antitumour activity. At the doses evaluated in serial skin biopsies, matuzumab decreased phosphorylation of EGFR and MAPK, and increased phosphorylation of STAT-3
A novel extracellular role for tissue transglutaminase in matrix-bound VEGF-mediated angiogenesis
The importance of tissue transglutaminase (TG2) in angiogenesis is unclear and contradictory. Here we show that inhibition of extracellular TG2 protein crosslinking or downregulation of TG2 expression leads to inhibition of angiogenesis in cell culture, the aorta ring assay and in vivo models. In a human umbilical vein endothelial cell (HUVEC) co-culture model, inhibition of extracellular TG2 activity can halt the progression of angiogenesis, even when introduced after tubule formation has commenced and after addition of excess vascular endothelial growth factor (VEGF). In both cases, this leads to a significant reduction in tubule branching. Knockdown of TG2 by short hairpin (shRNA) results in inhibition of HUVEC migration and tubule formation, which can be restored by add back of wt TG2, but not by the transamidation-defective but GTP-binding mutant W241A. TG2 inhibition results in inhibition of fibronectin deposition in HUVEC monocultures with a parallel reduction in matrix-bound VEGFA, leading to a reduction in phosphorylated VEGF receptor 2 (VEGFR2) at Tyr1214 and its downstream effectors Akt and ERK1/2, and importantly its association with b1 integrin. We propose a mechanism for the involvement of matrix-bound VEGFA in angiogenesis that is dependent on extracellular TG2-related activity
Outcome according to KRAS-, NRAS- and BRAF-mutation as well as KRAS mutation variants: pooled analysis of five randomized trials in metastatic colorectal cancer by the AIO colorectal cancer study group
BACKGROUND:
To explore the impact of KRAS, NRAS and BRAF mutations as well as KRAS mutation variants in patients with metastatic colorectal cancer (mCRC) receiving first-line therapy.
PATIENTS AND METHODS:
A total of 1239 patients from five randomized trials (FIRE-1, FIRE-3, AIOKRK0207, AIOKRK0604, RO91) were included into the analysis. Outcome was evaluated by the Kaplan-Meier method, log-rank tests and Cox models.
RESULTS:
In 664 tumors, no mutation was detected, 462 tumors were diagnosed with KRAS-, 39 patients with NRAS- and 74 patients with BRAF-mutation. Mutations in KRAS were associated with inferior progression-free survival (PFS) and overall survival (OS) [multivariate hazard ratio (HR) for PFS: 1.20 (1.02-1.42), P = 0.03; multivariate HR for OS: 1.41 (1.17-1.70), P < 0.001]. BRAF mutation was also associated with inferior PFS [multivariate HR: 2.19 (1.59-3.02), P < 0.001] and OS [multivariate HR: 2.99 (2.10-4.25), P < 0.001]. Among specific KRAS mutation variants, the KRAS G12C-variant (n = 28) correlated with inferior OS compared with unmutated tumors [multivariate HR 2.26 (1.25-4.1), P = 0.001]. A similar trend for OS was seen in the KRAS G13D-variant [n = 71, multivariate HR 1.46 (0.96-2.22), P = 0.10]. More frequent KRAS exon 2 variants like G12D [n = 152, multivariate HR 1.17 (0.86-1.6), P = 0.81] and G12V [n = 92, multivariate HR 1.27 (0.87-1.86), P = 0.57] did not have significant impact on OS.
CONCLUSION:
Mutations in KRAS and BRAF were associated with inferior PFS and OS of mCRC patients compared with patients with non-mutated tumors. KRAS exon 2 mutation variants were associated with heterogeneous outcome compared with unmutated tumors with KRAS G12C and G13D (trend) being associated with rather poor survival
A Novel Requirement for Janus Kinases as Mediators of Drug Resistance Induced by Fibroblast Growth Factor-2 in Human Cancer Cells
The development of resistance to chemotherapy is a major cause of cancer-related death. Elucidating the mechanisms of drug resistance should thus lead to novel therapeutic strategies. Fibroblast growth factor (FGF)-2 signaling induces the assembly of a multi-protein complex that provides tumor cells with the molecular machinery necessary for drug resistance. This complex, which involves protein kinase C (PKC) ε, v-raf murine sarcoma viral oncogene homolog B1 (B-RAF) and p70 S6 kinase β (S6K2), enhances the selective translation of anti-apoptotic proteins such as B-cell leukaemia/lymphoma-2 (BCL-2) and inhibitors of apoptosis protein (IAP) family members and these are able to protect multiple cancer cell types from chemotherapy-induced cell death. The Janus kinases (JAKs) are most noted for their critical roles in mediating cytokine signaling and immune responses. Here, we show that JAKs have novel functions that support their consideration as new targets in therapies aimed at reducing drug resistance. As an example, we show that the Janus kinase TYK2 is phosphorylated downstream of FGF-2 signaling and required for the full phosphorylation of extracellular signal-regulated kinase (ERK) 1/2. Moreover, TYK2 is necessary for the induction of key anti-apoptotic proteins, such as BCL-2 and myeloid cell leukemia sequence (MCL) 1, and for the promotion of cell survival upon FGF-2. Silencing JAK1, JAK2 or TYK2 using RNA interference (RNAi) inhibits FGF2-mediated proliferation and results in the sensitization of tumor cells to chemotherapy-induced killing. These effects are independent of activation of signal transducer and activator of transcription (STAT) 1, STAT3 and STAT5A/B, the normal targets of JAK signaling. Instead, TYK2 associates with the other kinases previously implicated in FGF-2-mediated drug resistance. In light of these findings we hypothesize that TYK2 and other JAKs are important modulators of FGF-2-driven cell survival and that inhibitors of these kinases will likely improve the effectiveness of other cancer therapies
Giant cell tumor of the uterus: case report and response to chemotherapy
BACKGROUND: Giant cell tumor (GCT) is usually a benign but locally aggressive primary bone neoplasm in which monocytic macrophage/osteoclast precursor cells and multinucleated osteoclast-like giant cells infiltrate the tumor. The etiology of GCT is unknown, however the tumor cells of GCT have been reported to produce chemoattractants that can attract osteoclasts and osteoclast precursors. Rarely, GCT can originate at extraosseous sites. More rarely, GCT may exhibit a much more aggressive phenotype. The role of chemotherapy in metastatic GCT is not well defined. CASE PRESENTATION: We report a case of an aggressive GCT of the uterus with rapidly growing lung metastases, and its response to chemotherapy with pegylated-liposomal doxorubicin, ifosfamide, and bevacizumab, along with a review of the literature. CONCLUSION: Aggressive metastasizing GCT may arise in the uterus, and may respond to combination chemotherapy
- …