7 research outputs found

    Microcontroller based double beam modulation system for atomic scattering experiments

    Get PDF
    Double beam modulation is widely used in atomic collision experiments in the case where the noise arising from each of the beams exceeds the measured signal. A method for minimizing the statistical uncertainty in a measured signal in a given time period is discussed, and a flexible modulation and counting system based on a low cost PIC microcontroller is described. This device is capable of modifying the acquisition parameters in real time during the course of an experimental run. It is shown that typical savings in data acquisition time of approximately 30% can be achieved using this optimized modulation scheme

    Almond

    No full text

    Peach

    No full text

    Optical modelling and analysis of the Q and U bolometric interferometer for cosmology

    No full text
    International audienceRemnant radiation from the early universe, known as the Cosmic Microwave Background (CMB), has been redshifted and cooled, and today has a blackbody spectrum peaking at millimetre wavelengths. The QUBIC (Q&U Bolometric Interferometer for Cosmology) instrument is designed to map the very faint polaristion structure in the CMB. QUBIC is based on the novel concept of bolometric interferometry in conjunction with synthetic imaging. It will have a large array of input feedhorns, which creates a large number of interferometric baselines. The beam from each feedhorn is passed through an optical combiner, with an off-axis compensated Gregorian design, to allow the generation of the synthetic image. The optical-combiner will operate in two frequency bands (150 and 220 GHz with 25% and 18.2 % bandwidth respectively) while cryogenically cooled TES bolometers provide the sensitivity required at the image plane. The QUBIC Technical Demonstrator (TD), a proof of technology instrument that contains 64 input feed-horns, is currently being built and will be installed in the Alto Chorrillos region of Argentina. The plan is then for the full QUBIC instrument (400 feed-horns) to be deployed in Argentina and obtain cosmologically significant results. In this paper we will examine the output of the manufactered feed-horns in comparison to the nominal design. We will show the results of optical modelling that has been performed in anticipation of alignment and calibration of the TD in Paris, in particular testing the validity of real laboratory environments. We show the output of large calibrator sources (50 ° full width haf max Gaussian beams) and the importance of accurate mirror definitions when modelling large beams. Finally we describe the tolerance on errors of the position and orientation of mirrors in the optical combiner

    LiteBIRD: an all-sky cosmic microwave background probe of inflation

    No full text
    The Litebird mission will map polarized fluctuations in the cosmic microwave background (CMB) to search for the signature of gravitational waves from inflation, potentially opening a window on the Universe a fraction of a second after the Big Bang. CMB measurements from space give access to the largest angular scales and the full frequency range to constrain Galactic foregrounds, and Litebird has been designed to take best advantage of the unique window of space. Litebird will have a powerful ability to separate Galactic foreground emission from the CMB due to its 15 frequency bands spaced between 40 and 402 GHz and sensitive 100-mK bolometers. Litebird will provide stringent control of systematic errors due to the benign thermal environment at the second Lagrange point, L2, 20-K rapidly rotating half-wave plates on each telescope, and the ability to crosscheck its results by measuring both the reionization and recombination peaks in the B-mode power spectrum. Litebird would be the next step in the series of CMB space missions, COBE, WMAP, and Planck, each of which has given landmark scientific discoveries. The 4,736 detectors are distributed between three 5-K cooled telescopes, called the Low-, Medium-, and High-frequency telescopes (LFT, MFT, and HFT), with 31 arc-min resolution at 140 GHz. Litebird will map 20 times deeper than Planck, with a total error of \u3b4r < 0.001, conservatively assuming equal contributions of statistical error, systematic error, and margin. Litebird will be designed to discover or disfavor the best motivated inflation models \u2013 singlefield models that naturally explain the observed value of the spectral index of primordial density perturbations, with a characteristic scale of the potential comparable to or larger than the Planck scale. Litebird will also measure the optical depth to reionization to cosmicvariance-limited error, enabling ground-based high-resolution CMB experiments to measure the sum of neutrino masses. The proposed mission will be a partnership. Japan Aerospace Exploration Agency (JAXA) will provide the launch, spacecraft, Joule-Thomson coolers, LFT and its wave-plate. Europe will build the MFT and HFT, their waveplates, and the 100-mK cooler. Canada will contribute the 300-K detector readout electronics. The U.S. will build the detector arrays, cold readout electronics, and the 1.8-K cooler likely through a NASA mission of opportunity cost capped at 75M.InMay2019,JAXAselectedLitebirdasa2˘01cstrategicLclass2˘01dmissionforlaunchinearly2028.Thetotalmissioncostisestimatedtobeapproximately75M. In May 2019, JAXA selected Litebird as a \u201cstrategic L-class\u201d mission for launch in early 2028. The total mission cost is estimated to be approximately 500M, and therefore the U.S. contribution is highly leveraged. Finally, Litebird technologies have been tested or will be tested in the near future on ground-based experiments. Litebird\u2019s ability to measure the entire sky at the largest angular scales with 15 frequency bands is complementary to that of ground-based experiments such as South Pole Observatory, Simons Observatory, and CMB-S4, which will focus on deep observations of low-foreground sky. Litebird can provide valuable foreground information for ground-based experiments and ground-based experiments can improve Litebird\u2019s observations with high-resolution lensing data

    Optical Characterization of OMT-Coupled TES Bolometers for LiteBIRD

    No full text
    International audienceFeedhorn- and orthomode transducer- (OMT) coupled transition edge sensor (TES) bolometers have been designed and micro-fabricated to meet the optical specifications of the LiteBIRD high frequency telescope (HFT) focal plane. We discuss the design and optical characterization of two LiteBIRD HFT detector types: dual-polarization, dual-frequency-band pixels with 195/280 GHz and 235/337 GHz band centers. Results show well-matched passbands between orthogonal polarization channels and frequency centers within 3% of the design values. The optical efficiency of each frequency channel is conservatively reported to be within the range 0.64-0.72, determined from the response to a cryogenic, temperature-controlled thermal source. These values are in good agreement with expectations and either exceed or are within 10% of the values used in the LiteBIRD sensitivity forecast. Lastly, we report a measurement of loss in Nb/SiN x/Nb microstrip at 100 mK and over the frequency range 200-350 GHz, which is comparable to values previously reported in the literature

    Alkylphospholipids are Signal Transduction Modulators with Potential for Anticancer Therapy

    No full text
    corecore