535 research outputs found

    Minimum Streamflows - Federal Power to Secure

    Get PDF

    A Hybrid Radial Basis Function-Pseudospectral Method for Thermal Convection in a 3-D Spherical Shell

    Get PDF
    A novel hybrid spectral method that combines radial basis function (RBF) and Chebyshev pseudospectral methods in a “2 + 1” approach is presented for numerically simulating thermal convection in a 3‐D spherical shell. This is the first study to apply RBFs to a full 3‐D physical model in spherical geometry. In addition to being spectrally accurate, RBFs are not defined in terms of any surface‐based coordinate system such as spherical coordinates. As a result, when used in the lateral directions, as in this study, they completely circumvent the pole issue with the further advantage that nodes can be “scattered” over the surface of a sphere. In the radial direction, Chebyshev polynomials are used, which are also spectrally accurate and provide the necessary clustering near the boundaries to resolve boundary layers. Applications of this new hybrid methodology are given to the problem of convection in the Earth’s mantle, which is modeled by a Boussinesq fluid at infinite Prandtl number. To see whether this numerical technique warrants further investigation, the study limits itself to an isoviscous mantle. Benchmark comparisons are presented with other currently used mantle convection codes for Rayleigh number (Ra) 7 × 103 and 105. Results from a Ra = 106 simulation are also given. The algorithmic simplicity of the code (mostly due to RBFs) allows it to be written in less than 400 lines of MATLAB and run on a single workstation. We find that our method is very competitive with those currently used in the literature

    The HD 163296 Circumstellar Disk in Scattered Light: Evidence of Time-Variable Self-Shadowing

    Get PDF
    We present the first multicolor view of the scattered light disk of the Herbig Ae star HD 163296, based on coronagraphic observations from the Hubble Space Telescope Advanced Camera for Surveys (HST ACS). Radial profile fits of the surface brightness along the disk's semimajor axis indicate that the disk is not continuously flared, and extends to ~540 AU. The disk's color (V − I) = 1.1 at a radial distance of 3.5'' is redder than the observed stellar color (V − I) = 0.15. This red disk color might be indicative of either an evolution in the grain size distribution (i.e., grain growth) and/or composition, both of which would be consistent with the observed nonflared geometry of the outer disk. We also identify a single ansa morphological structure in our F435W ACS data, which is absent from earlier epoch F606W and F814W ACS data, but corresponds to one of the two ansae observed in archival HST Space Telescope Imaging Spectrograph (STIS) coronagraphic data. Following transformation to similar bandpasses, we find that the scattered light disk of HD 163296 is 1 mag arcsec^(−2) fainter at 3.5'' in the STIS data than in the ACS data. Moreover, variations are seen in (1) the visibility of the ansa(e) structures, (2) the relative surface brightness of the ansa(e) structures, and (3) the (known) intrinsic polarization of the system. These results indicate that the scattered light from the HD 163296 disk is variable. We speculate that the inner disk wall, which Sitko et al. suggests has a variable scale height as diagnosed by near-IR SED variability, induces variable self-shadowing of the outer disk. We further speculate that the observed surface brightness variability of the ansa(e) structures may indicate that the inner disk wall is azimuthally asymmetric

    PDS 144: the first confirmed Herbig Ae-Herbig Ae wide binary

    Get PDF
    PDS 144 is a pair of Herbig Ae stars that are separated by 5.'' 35 on the sky. It has previously been shown to have an A2Ve Herbig Ae star viewed at 83 degrees inclination as its northern member and an A5Ve Herbig Ae star as its southern member. Direct imagery revealed a disk occulting PDS 144 N-the first edge-on disk observed around a Herbig Ae star. The lack of an obvious disk in direct imagery suggested PDS 144 S might be viewed face-on or not physically associated with PDS 144 N. Multi-epoch Hubble Space Telescope imagery of PDS 144 with a 5 year baseline demonstrates PDS 144 N & S are comoving and have a common proper motion with TYC 6782-878-1. TYC 6782-878-1 has previously been identified as a member of Upper Sco sub-association A at d = 145 +/- 2 pc with an age of 5-10 Myr. Ground-based imagery reveals jets and a string of Herbig-Haro knots extending 13' (possibly further) which are aligned to within 7 degrees +/- 6 degrees on the sky. By combining proper motion data and the absence of a dark mid-plane with radial velocity data, we measure the inclination of PDS 144 S to be i = 73 degrees +/- 7 degrees. The radial velocity of the jets from PDS 144 N & S indicates they, and therefore their disks, are misaligned by 25 degrees +/- 9 degrees. This degree of misalignment is similar to that seen in T Tauri wide binaries.Peer reviewe

    Intracellular Nanoparticle Dynamics Affected by Cytoskeletal Integrity

    Get PDF
    The cell interior is a crowded chemical space, which limits the diffusion of molecules and organelles within the cytoplasm, affecting the rates of chemical reactions. We provide insight into the relationship between non-specific intracellular diffusion and cytoskeletal integrity. Quantum dots entered the cell through microinjection and their spatial coordinates were captured by tracking their fluorescence signature as they diffused within the cell cytoplasm. Particle tracking revealed significant enhancement in the mobility of biocompatible quantum dots within fibrosarcoma cells versus their healthy counterparts, fibroblasts, as well as in actin destabilized fibroblasts versus untreated fibroblasts. Analyzing the displacement distributions provided insight into how the heterogeneity of the cell cytoskeleton influences intracellular particle diffusion. We demonstrate that intracellular diffusion of non-specific nanoparticles is enhanced by disrupting the actin network, which has implications for drug delivery efficacy and trafficking

    Combined 2-micron Dial and Doppler Lidar: Application to the Atmosphere of Earth or Mars

    Get PDF
    A concept is explored for combining the Doppler and DIAL techniques into a single, multifunctional instrument. Wind, CO2 concentration, and aerosol density can all be measured. Technology to build this instrument is described, including the demonstration of a prototype lidar. Applications are described for use in the Earth science. The atmosphere of Mars can also be studied, and results from a recently-developed simulation model of performance in the Martian atmosphere are presented

    Resolving the gap and AU-scale asymmetries in the pre-transitional disk of V1247 Orionis

    Full text link
    Pre-transitional disks are protoplanetary disks with a gapped disk structure, potentially indicating the presence of young planets in these systems. In order to explore the structure of these objects and their gap-opening mechanism, we observed the pre-transitional disk V1247 Orionis using the Very Large Telescope Interferometer, the Keck Interferometer, Keck-II, Gemini South, and IRTF. This allows us spatially resolve the AU-scale disk structure from near- to mid-infrared wavelengths (1.5 to 13 {\mu}m), tracing material at different temperatures and over a wide range of stellocentric radii. Our observations reveal a narrow, optically-thick inner-disk component (located at 0.18 AU from the star) that is separated from the optically thick outer disk (radii >46 AU), providing unambiguous evidence for the existence of a gap in this pre-transitional disk. Surprisingly, we find that the gap region is filled with significant amounts of optically thin material with a carbon-dominated dust mineralogy. The presence of this optically thin gap material cannot be deduced solely from the spectral energy distribution, yet it is the dominant contributor at mid-infrared wavelengths. Furthermore, using Keck/NIRC2 aperture masking observations in the H, K', and L' band, we detect asymmetries in the brightness distribution on scales of about 15-40 AU, i.e. within the gap region. The detected asymmetries are highly significant, yet their amplitude and direction changes with wavelength, which is not consistent with a companion interpretation but indicates an inhomogeneous distribution of the gap material. We interpret this as strong evidence for the presence of complex density structures, possibly reflecting the dynamical interaction of the disk material with sub-stellar mass bodies that are responsible for the gap clearing.Comment: 16 pages, 17 Figures, accepted by Astrophysical Journa

    Cometary Dust in the Debris Disks of HD 31648 and HD 163296: Two ``Baby'' beta Pics

    Full text link
    The debris disks surrounding the pre-main sequence stars HD 31648 and HD 163296 were observed spectroscopically between 3 and 14 microns. Both possess a silicate emission feature at 10 microns which resembles that of the star beta Pictoris and those observed in solar system comets. The structure of the band is consistent with a mixture of olivine and pyroxene material, plus an underlying continuum of unspecified origin. The similarity in both size and structure of the silicate band suggests that the material in these systems had a processing history similar to that in our own solar system prior to the time that the grains were incorporated into comets.Comment: 17 pages, AASTeX, 5 eps figures, accepted for publication in Ap.
    corecore