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[1] A novel hybrid spectral method that combines radial basis function (RBF) and Chebyshev pseudospec-
tral methods in a “2 + 1” approach is presented for numerically simulating thermal convection in a 3‐D
spherical shell. This is the first study to apply RBFs to a full 3‐D physical model in spherical geometry.
In addition to being spectrally accurate, RBFs are not defined in terms of any surface‐based coordinate
system such as spherical coordinates. As a result, when used in the lateral directions, as in this study, they
completely circumvent the pole issue with the further advantage that nodes can be “scattered” over the sur-
face of a sphere. In the radial direction, Chebyshev polynomials are used, which are also spectrally accurate
and provide the necessary clustering near the boundaries to resolve boundary layers. Applications of this
new hybrid methodology are given to the problem of convection in the Earth’s mantle, which is modeled
by a Boussinesq fluid at infinite Prandtl number. To see whether this numerical technique warrants further
investigation, the study limits itself to an isoviscous mantle. Benchmark comparisons are presented with
other currently used mantle convection codes for Rayleigh number (Ra) 7 × 103 and 105. Results from
a Ra = 106 simulation are also given. The algorithmic simplicity of the code (mostly due to RBFs) allows
it to be written in less than 400 lines of MATLAB and run on a single workstation. We find that our method
is very competitive with those currently used in the literature.
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1. Introduction

[2] Mantle convection models in spherical geome-
try have seen a variety of numerical method
implementations, from finite element and finite
volume methods on a variety of grids such as
icosahedral, cubed sphere, Yin‐Yang, spiral, and
hexahedral [Baumgardner, 1985; Hernlund and
Tackley, 2003; Yoshida and Kageyama, 2004;
Harder and Hansen, 2005; Stemmer et al., 2006;
Hüttig and Stemmer, 2008; Zhong et al., 2000,
2008], to pseudospectral (PS) methods using
spherical harmonics [Bercovici et al., 1989;
Harder, 1998]. The former methods can be cum-
bersome and tedious to program due to grid gen-
eration and treatment of the equations near element
boundaries and are generally low order. The latter
requires more nodes than basis functions (espe-
cially when dealiasing filters are used), since there
are 2N + 1 longitudinal Fourier modes for each lat-
itudinal associated Legendre function of degree N,
and does not easily allow for local refinement.

[3] A novel approach that is in its infancy of
development is radial basis functions (RBFs), a
mesh‐less method that has the advantage of being
spectrally accurate for arbitrary node layouts in
multidimensions. Former studies, using this
method on spherical surfaces, have shown it to be
very competitive in comparison to numerical
methods that are currently used in the geosciences,
algorithmically simpler, and naturally permitting
local node refinement [Flyer and Wright, 2009;
Flyer and Lehto, 2010; Flyer and Wright, 2007;
Fornberg and Piret, 2008]. However, given this
early stage of development, numerical modeling
experiments with RBFs are warranted before full‐
blown mantle convection models using RBFs are
developed that can handle everything from variable
viscosity to thermochemical convection. As a
result, this paper is of an exploratory nature from
the perspective of numerics. Since no 3‐D model
using RBF spatial discretization of partial differ-
ential equations (PDEs) in spherical geometry
exists in the math or science literature, it follows
that taking the simplest formulation for mantle
convection, isoviscous flows at various Rayleigh
numbers (as is done by Bercovici et al. [1989] and
Harder [1998]) would be a good starting point.

[4] The paper is organized as follows: Section 2
describes the physical model; section 3 gives an
introduction to RBFs; section 4 shows how the
spatial operators are discretized using RBFs;
section 5 reviews the concept of influence matrices

that must be used for solving the coupled Poisson
equations which result from writing the velocity in
terms of a poloidal potential [see Chandrasekhar,
1961]; section 6 describes the time discretization;
section 7 provides numerical results from two test
cases with comparisons to those in the literature
and results from a Ra = 106 simulation; section 8
gives timing results for the benchmark cases and
section 9 discusses extensions of the method to high
Ra, variable viscosity, and local node refinement.
Appendices A and B give the steps for implement-
ing the RBF‐PS algorithm.

2. Physical Model

[5] We consider a thermal convection model of a
Boussinesq fluid at infinite Prandtl number in a
spherical shell that is heated from below. The
governing equations are

r � u ¼ 0 ðcontinuityÞ; ð1Þ

r � � ruþ frugT
� �h i

þ Ra T r̂ ¼ rp ðmomentumÞ; ð2Þ

@T

@t
þ u � rT ¼ r2T ðenergyÞ; ð3Þ

where u = (ur, u�, ul) is the velocity field in
spherical coordinates (� = latitude, l = longitude),
p is pressure, T is temperature, r̂ is the unit vector
in the radial direction, h is the viscosity, and Ra is
the Rayleigh number. The boundary conditions on
the velocity of the fluid at the inner and outer
surfaces of the spherical shell are

urjr¼Ri;Ro
¼ 0|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

impermeable

and

r
@

@r

u�
r

� �����
r¼Ri;Ro

¼ r
@

@r

u�
r

� �����
r¼Ri;Ro

¼ 0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
shear stress free

; ð4Þ

where Ri is the radius of the inner surface of the
shell and Ro is the radius of the outer surface as
measured from the center of the earth. The
boundary conditions on the temperature are

TðRi; �; �Þ ¼ 1 and TðRo; �; �Þ ¼ 0:

Equations (1)–(3) have been nondimensionalized
with the length scale chosen as the thickness of the
shell, DR = Ro − Ri, the time scale chosen as the
thermal diffusion time, t = (DR)2/� (� = thermal
diffusivity), and the temperature scale chosen as the
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difference between the temperature at the inner and
outer boundaries, DT.

[6] In this study, we treat the fluid as isoviscous, h =
const. Thus, the dynamics of the fluid are governed
by the Ra, which can be interpreted as a ratio of the
destabilizing force due to the buoyancy of the
heated fluid to the stabilizing force due to the vis-
cosity of the fluid. It takes the specific form of

Ra ¼ �g�DTðDRÞ3
��

;

where r is the density of the fluid, g is the accel-
eration due to gravity, and a is the coefficient of
thermal expansion.

[7] Chandrasekhar [1961] [see also Backus, 1966]
shows that any divergence‐free field can be
expressed in terms of a poloidal and toroidal
potential, u = r × r × ((Fr)r̂) + r × (Yr̂). If the
fluid is isoviscous (or the viscosity stress tensor is
spherically symmetric) and satisfies (4) then the
field is purely poloidal (i.e., Y ≡ 0). As a result, the
three‐dimensional continuity and momentum
equations (1) and (2) can be alternatively written as
a system of two coupled Poisson equations. The
nonlinear thermal convection model can then be
written as

DsWþ @

@r
r2
@W
@r

� �
¼ Ra r T ; ð5Þ

DsFþ @

@r
r2
@F
@r

� �
¼ r2W; ð6Þ

@T

@t
¼ � ur

@T

@r
þ u�

1

r

@T

@�
þ u�

1

r cos �

@T

@�

� �
þ 1

r2
DsT þ 1

r2
@

@r
r2
@T

@r

� �
; ð7Þ

where � 2 [−p/2, p/2], l 2 (−p, p], and Ds is the
surface Laplacian operator. The velocity boundary
conditions (4) in terms of F are

Fjr¼Ri;Ro
¼ 0 and

@2F
@r2

����
r¼Ri;Ro

¼ 0: ð8Þ

The components of the velocity u = (ur, u�, ul) are
given by

u ¼ r�r� ðFrÞr̂½ �

¼ 1

r
DsF;

1

r

@2

@r@�
ðFrÞ; 1

r cos �

@2

@r@�
ðFrÞ

� �
: ð9Þ

We separate the angular and radial directions of the
operators as will be discussed in section 4 on

spatial discretization. Sections 5 and 6 describe the
various steps of the algorithm.

3. Introduction to RBFs

[8] We only intend to give a brief introduction to
RBFs. For a good, in depth discussion see Fasshauer
[2007]. The strength of RBFs lie in approximation
problems in multidimensional space with scattered
node layouts [Fornberg et al., 2010]. In the context
of solving partial differential equations (PDEs), the
global RBF approach can be viewed as a major
generalization of pseudospectral methods [Fornberg
et al., 2002, 2004]. The concept behind RBFs is that
by abandoning the orthogonality of the basis func-
tions, the nodes can be arbitrarily scattered over the
domain, maintaining spectral accuracy with the abil-
ity to node refine in a completely grid‐independent
environment [Flyer and Lehto, 2010]. This allows
for geometric flexibility with regard to the shape
of the domain, as well as flexibility in allowing the
nodes to be concentrated where greater resolution is
needed. In addition, studies have shown that RBFs
can take unusually long time steps in comparison to
other methods, such as pseudospectral, spectral ele-
ment and finite volume, for solving purely hyperbolic
systems [Flyer and Wright, 2007, 2009; Flyer and
Lehto, 2010].

[9] RBF spatial discretization is based on linear
combinations of translates of a single radially
symmetric function that collocates the data, as is
illustrated in Figure 1. The argument of the RBF, d,
is the Euclidean distance between where the RBF is
centered xj 2 Rn and where it is evaluated x 2 Rn

with n being the dimension of the space, i.e., d =
kx − xjk2 (from now on for simplicity we drop
the subscript 2). Since its argument only depends
on a scalar distance, independent of coordinates,
dimension or geometry, RBFs are exceptionally
simple to program with the algorithmic complexity
of the code not increasing with dimension. For
example, for two points on the surface of the unit
sphere, x1 = (x1, y1, z1) and x2 = (x2, y2, z2) (or in
spherical coordinates (�1, l1) and (�2, l2)), where
x1 is the center of the RBF and x2 is where it is to
be evaluated, the argument of the RBF is

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 � x1Þ2 þ ðy2 � y1Þ2 þ ðz2 � z1Þ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� xT2 x1Þ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� cos �2 cos �1 cosð�2 � �1Þ � sin �2 sin �1Þ

p
:

Notice that the distance is not measured as great
arcs along the sphere but rather as a straight line
through the sphere. Thus, the RBF has no “sense”
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that it exists on a spherical manifold. It should be
emphasized that the coordinate system is only used
to identify the location of the nodes and not a
representation of any grid or manifold (i.e., geom-
etry) in n‐dimensional space. Thus, if we choose to
represent the node locations in spherical coordinates,
a latitude‐longitude grid is never used, but rather the
nodes are placed as the user desires.

[10] Common RBFs are listed in Table 1. There are
two distinct kinds, piecewise smooth and infinitely
smooth. Piecewise smooth RBFs lead to algebraic
convergence as they contain a jump in some
derivative, e.g., ∣d∣3 jumps in the third derivative.
Infinitely smooth RBFs lead to spectral conver-
gence as they do not jump in any derivative and thus
will be used in this paper. This latter group features a
parameter " which determines the shape of the RBF
and plays an important role in both the conditioning
and accuracy of RBF matrices [Fornberg and Flyer,
2005; Buhmann, 2003]. How the error of the solu-
tion varies as a function of the shape parameter " for
solving different classes of PDEs and what are the
optimal choices for it has been studied by Iske
[2004], Wright and Fornberg [2006], Wertz et al.
[2006], Driscoll and Heryundono [2007], Flyer
and Wright [2007], Fasshauer and Zhang [2007],
Fornberg and Zuev [2007], Fornberg and Piret
[2008], and Flyer and Wright [2009].

[11] The above studies have shown that best results
are achieved with roughly evenly distributed nodes.
Since only a maximum of 20 nodes can be evenly
distributed on a sphere, there are a multitude of
algorithms to define “even” distribution for larger
numbers of nodes, such as equal partitioned area,
convex hull approaches, Voronoi cells, electrostatic
repulsion [Hardin and Saff, 2004]. Although any of
these will suffice, we have decided to use an elec-

Figure 1. (a) Data values { fj}j=1
N , (b) the RBF colloca-

tion functions, and (c) the resulting RBF interpolant.

Table 1. Commonly Used RBFs

Abbreviation Name Definition

Piecewise Smooth
MN monomial ∣d∣2m+1
TPS thin plate spline ∣d∣2m ln ∣d∣

Infinitely Smooth
MQa multiquadric

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð"dÞ2

q
IMQ inverse MQ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð"dÞ2
q

IQ inverse quadratic 1

1þ ð"dÞ2
GA Gaussian e−("d)

2

aThe MQ is used for all results in this study.
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trostatic repulsion or minimal energy (ME) approach
since the nodes do not line up along any vertices
or lines, emphasizing the arbitrary node layout and
coordinate‐free nature of a RBF methodology, as
can be seen by the node layout in Figure 2a. A very
important consequence of this is that although the
PDEs of the physical model are posed and solved in
spherical coordinates, there are no pole singularities.

4. Spatial Discretization

[12] To numerically solve (5)–(7) a “2 + 1” layer-
ing approach is used, where the lateral directions

(�, l) are discretized separately from the radial
direction. Using collocation, the approximate solu-
tion is calculated at the nodes shown in Figure 2b.
We use M + 2 Chebyshev nodes in the radial
direction (corresponding to M interior points and
2 boundary points) and N “scattered” nodes on
each of the resulting M spherical surfaces. As
shown in Figure 2b, this gives a tensor product
structure between the radial and lateral directions,
which allows the spatial operators to be computed
in O(M2N) + O(MN2) operations instead of O
(M2N2) as discussed below. While all radial deriva-
tives are discretized using Chebyshev polynomials,
differential operators in the latitudinal direction �
and longitudinal direction l are approximated dis-
cretely on each spherical surface using RBFs. In
sections 4.1 and 4.2, we will discuss how to dis-
cretize the lateral advection and surface Laplacian
operators using RBFs, with a novel RBF formula-
tion of the latter. The radial discretization by collo-
cation with Chebyshev polynomials is standard and
is therefore omitted (see, for example, Fornberg
[1995], Trefethen [2000] or Weideman and Reddy
[2000] for details).

4.1. RBF Discretization of the Lateral
Advection Operator

[13] Given a velocity field tangent to the unit sphere
that is a function of time and space, u = {u�(�, l, t),
ul(�, l, t)}, the lateral advection operator is given
by

u � r ¼ u�
@

@�
þ u�
cos �

@

@�
: ð10Þ

which is singular at � = ±�2, the north and south
poles, unless @

@� also vanishes there. We will next
see that this is exactly what happens when the oper-
ator is applied to an RBF.

[14] Setting " =1 (for simplicity of notation), let	j(d) =
	(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� cos � cos �j cosð�� �jÞ � sin � sin �jÞ

p
) be

an RBF centered at the node (�j, lj). Using the
chain rule, the partial derivatives of the RBF 	j(d)
with respect to l and � are given by

@

@�
	jðdÞ ¼ @d

@�

@	

@d
¼ cos � cos �j sinð�� �jÞ 1

d

@	j

@d

� �
; ð11Þ

@

@�
	jðdÞ ¼ @d

@�

@	

@d

¼ ðsin � cos �j cosð�� �jÞ � cos � sin �jÞ 1

d

@	j

@d

� �
:

ð12Þ

Figure 2. (a) RBF node layout on the surface of a
sphere and (b) 3‐D view of the discretization of the
spherical shell used in the hybrid RBF‐PS calculation.
Blue is the outer boundary, and red is the inner bound-
ary; black dots display the computational nodes, which
are distributed in the radial direction along the extrema
of the Chebyshev polynomials. Note that the spherical
shell has been opened up in Figure 2b to show the detail.
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Inserting (11) and (12) into (10), we have

u � r ¼ u�ðcos �j sin � cosð�� �jÞ � sin �j cos �Þ 1

d

@	j

@d

� �
þ u� cos �j sinð�� �jÞ 1

d

@	j

@d

� �
: ð13Þ

Given that the velocities are smooth, notice that
nowhere on the sphere is (13) singular.

[15] Now, we have all the components that are
necessary to build the action of the advection
operator on an RBF representation of the temper-
ature field. We first represent T(l, �) as an RBF
expansion given by

Tð�; �Þ ¼
XN
j¼1

cj	jðdð�; �ÞÞ: ð14Þ

where cj are the unknown expansion coefficients.
We then apply the exact differential operator
u · r to (14) and evaluate it at the node locations,
{(li, �i)}i=1

N , where T(l, �) is known. Note that
because ul and u� are time dependent we will need
to create two separate differentiation matrices, one
to represent 1

cos �
@
@�	j(d) and another to represent

@
@�	j(d), otherwise (13) could be written as a single
differentiation matrix. Since they are created in the
same way, we will only demonstrate how to for-
mulate Dl, the differentiation matrix for the lon-
gitudinal direction:

[16] 1. Take 1
cos �

@
@� of (14):

1

cos �

@Tð�; �Þ
@�

¼
XN
j¼1

cj
1

cos �

@	jðdÞ
@�

¼
XN
j¼1

cj cos �j sinð�� �jÞ 1

d

@	j

@d

� �
:

[17] 2. Evaluate step 1 at the node locations:

XN
j¼1

cj cos �j sinð�i � �jÞ 1d
@	j

@d

� �����
ð�;�Þ¼ð�i;�iÞNi¼1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Components of matrix B�

¼ B�c;

where c contains the N unknown discrete expan-
sion coefficients. If we evaluate the RBFs in (14) at
the node locations {(li, �i)}i=1

N then we have the
collocation problem

	ðkx1 � x1kÞ � � � 	ðkx1 � xNkÞ
..
. . .

. ..
.

	ðkxN � x1kÞ � � � 	ðkxN � xNkÞ

2664
3775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A

c1

..

.

cN

2664
3775

|fflfflffl{zfflfflffl}
c

¼
T1

..

.

TN

2664
3775

|fflfflffl{zfflfflffl}
T

;

ð15Þ

where A is the RBF interpolation matrix for the
node set. Thus, c = A−1T and substituting this into
step 2 above gives DlT = Bl(A

−1T), in other words
Dl = BlA−1. Put verbally, the differentiation matri-
ces are obtained by applying the exact differential
operator to the interpolant and then evaluating it
at the data locations. Although the computation
of Dl and D� requires O(N

3) operations, it is a pre-
processing step that needs to be done only once.

4.2. A Novel RBF Surface Laplacian
Formulation

[18] Since RBFs do not require the nodes on a
spherical surface to have any directionality and
since RBFs are not defined in terms of any surface‐
based coordinate system (as discussed in section 3),
then for simplicity let us center an RBF at the north
pole xnp = (0, 0, 1) or (�, l) = (p/2, 0). The distance
from this point to any point on the sphere is then
given by

dðxÞ ¼ kx� xnpk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ ðz� 1Þ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� sinð�ÞÞ

p
:

ð16Þ
Now, the surface Laplacian in spherical coordinates
in given by

Ds ¼ @2

@�2
� tan �

@

@�
þ 1

cos2 �

@2

@�2 : ð17Þ

However, for a radial function centered at the
north pole there will be no l dependence. So, (17)
reduces to

Ds ¼ @2

@�2
� tan �

@

@�
: ð18Þ

Applying (18) to an RBF 	(d) gives

Ds	ðdÞ ¼ @2d

@�2
@	

@d
þ @d

@�

� �2@2	

@d2
� tan �

@d

@�

@	

@d
: ð19Þ

With the use of (16) and after some algebra, (19)
reduces to

Ds	ðdÞ ¼ 1

4
ð4� d2Þ @

2	

@d2
þ 4� 3d2

d

@	

@d

	 

: ð20Þ

Although we derived this formula by centering the
RBF at the north pole, any node could have served
as the north pole since an RBF is invariant to
coordinate rotations. The beauty of (20) is that it
expresses the action of the surface Laplacian on an
RBF simply in terms of the distances between
nodes without the coordinate system ever coming
into play. The RBF surface Laplacian differen-
tiation matrix is then defined as Ls = BsA

−1,
where Bs is now a matrix, evaluating (20) at

Geochemistry
Geophysics
Geosystems G3G3 WRIGHT ET AL.: RBF-PS METHOD FOR 3-D THERMAL CONVECTION 10.1029/2009GC002985

6 of 18



d =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1�cos�icos�icosð�i��jÞ� sin�i sin �jÞ

p
,

1 ≤ i, j ≤ N, j indexing the RBF centers and i the
node locations.

5. Momentum Equation Solver
and Influence Matrix Method

[19] We cannot directly solve (5) and (6) since we
have 4 boundary conditions on F, given by (8), and
none on W. We therefore use the influence matrix
method [Peyret, 2002] to find the unknown bound-
ary values on W such that all 4 boundary conditions
on F are satisfied. Since (5) and (6) are linear, the
solution to each Poisson equation can be represented
as a superposition of two solutions; the first, Wh and
Fh, satisfies the right‐hand side of the equations
with homogeneous Dirichlet boundary conditions;
the second, Wj and Fj, couples the unknown bound-
ary values (abbreviated bd), Wbd,j

Ri and Wbd,j
Ro , with Fj

Ri

andFj
Ro at each RBF collocation node, {�j, lj}j=1

N , on
the inner (Ri) and outer (Ro) boundary spherical
surfaces, respectively. In Table 2, the variables are
defined in terms of the Poisson equations they solve
with the overall solution written as

W ¼ Wh þ
XN
j¼1

WRi
bd; jW

Ri
j þ WRo

bd; jW
Ro
j

h i
and

F ¼ Fh þ
XN
j¼1

WRi
bd; jF

Ri
j þ WRi

bd; jF
Ro
j

h i
: ð21Þ

The method is reminiscent of a Green’s function
type approach, but instead of expanding the source
term of the PDEs in Dirac delta functions, we
expand the unknown boundary conditions in this
basis, solve Laplace’s equation (as the right‐hand
side is taken care of by the solutions Wh and Fh)
and superpose the solutions as is done by the
summations in (21). Thus, for each boundary, we

are building a table of N particular solutions,
{Wj

Ri}j=1
N and {Wj

Ro}j=1
N , whose boundary value is 1

at the jth boundary node and 0 at all others. These
PDEs are solved N times, corresponding to the
number of boundary nodes we have on each
boundary surface. It is important to note that
solving for Wj

Ri and Wj
Ro is a preprocessing step,

since the equation is temperature independent and
thus time independent. Also, once we solve for Fj

Ri

and Fj
Ro, Wj

Ri and Wj
Ro can be deleted as they are no

longer needed for any computations. As discussed
in Appendix A, the approximate solutions to the
PDEs listed in Table 2 are computed in spectral
space via a matrix diagonalization (or eigenvector
decomposition) technique which requires O(MN2) +
O(M2N) operations per PDE and O(M2) + O(N2)
storage. This is significant savings over a direct solve
of the equations, which would require O(M2N2)
operations and O(M2N2) storage.

[20] Once Fh has been computed, the unknown
coefficients Wbd, j

Ri and Wbd, j
Ro are determined by

requiring the linear combination of Fh, Fj
Ri, and

Fj
Ro in (21) satisfy the boundary conditions (8). Since

each of these variables satisfy the homogeneous
Dirichlet boundary conditions by construction, the
unknown coefficients are determined by the second
Neumann‐type boundary condition. Inserting the
expression for F given in (21) into this boundary
condition leads to the following set of linear
equations which need to be enforced at each bound-
ary node j = 1,…, N:

@2

@r2
FRi
j

����
r¼Ri

WRi
bd; j þ

@2

@r2
FRo
j

����
r¼Ri

WRo
bd; j ¼ � @2

@r2
Fh

����
r¼Ri

; ð22Þ

@2

@r2
FRi
j

����
r¼Ro

WRi
bd; j þ

@2

@r2
FRo
j

����
r¼Ro

WRo
bd; j ¼ � @2

@r2
Fh

����
r¼Ro

: ð23Þ

Table 2. Variables Composing the Influence Matrix Method With the PDEs and Boundary Conditions They Solve and If They
Are Time Dependenta

Variable PDE Boundary Conditions at r = Ri, Ro Time Dependent

Wh DWh = Ra r T Wh∣Ri,Ro = 0 Yes
Fh DFh = Wh Fh∣Ri,Ro = 0 Yes

Wj
Ri DWj

Ri = 0 Wj
Ri∣Ro = 0, Wj

Ri∣Ri =
1 if ð�; �Þ ¼ ð�j; �jÞ;
0 otherwise

�
No

Fj
Ri DFj

Ri = Wj
Ri Fj

Ri∣Ri,Ro = 0 No

Wj
Ro DWj

Ro = 0 Wj
Ro∣Ri = 0, Wj

Ro∣Ro =
1 if ð�; �Þ ¼ ð�j; �jÞ;
0 otherwise

�
No

Fj
Ro DFj

Ro = Wj
Ro Fj

Ro∣Ri,Ro = 0 No

Wbd, j
Ri , Wbd, j

Ro see (22)–(23) not applicable Yes
aThat is, if they need to be solved at every time step.
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The coefficient matrix that arises from this 2N × 2N
linear systems is called the influence matrix and can
be precalculated, LU decomposed and stored as it
is time independent. However, the solution to the
linear system must be computed every time step
as Fh is time dependent. Once Wbd, j

Ri and Wbd, j
Ro are

found, F can be determined from the second equa-
tion in (21) and then the velocity field can be cal-
culated according to (9).

[21] While the presentation above is the most
straightforward way to describe the influence
matrix technique for solving equations (5) and (6)
subject to the boundary conditions (8), it is not
the most computationally efficient given how the
solutions to Wh and Fh are computed in the
overall algorithm. In Appendix A, we discuss how
the computation can be done in the spectral space
of the discrete operators to reduce the computa-
tional cost. This description is the one used in the
code.

6. Time Discretization

[22] The Chebyshev discretization of the radial
component of the diffusion operator has a Courant‐
Friedrichs‐Lewy (CFL) condition on the time
step that is proportional to O(1/M4), which makes
an explicit scheme implausible. As a result, we
implement a semi‐implicit time stepping scheme
which treats this component implicitly and the
remaining terms of the energy equation explicitly.
We note that implicitly time stepping the entire
diffusion term, that is also the RBF discretization of
the Ds operator, would make no difference in terms
of the overall CFL condition on the energy equa-
tion. This is because the CFL condition on this
operator results in a time step restriction that scales
like O(1/N), with N = O(1000) typically, and the
time step restriction due to the Chebyshev dis-
cretization on the radial components of the non-
linear advection term scales as O(1/M2), with M =
O(10) typically.

[23] We separate the terms in the energy equation (7)
as follows:

@T

@t
¼ � ur

@T

@r
þ u�

1

r

@T

@�
þ u�

1

r sin �

@T

@�

� �
þ 1

r2
DsT|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

f ðT ;tÞ

þ 1

r2
@

@r
r2
@T

@r

� �
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

gðT ;tÞ

: ð24Þ

Using a third‐order Adams‐Bashforth (AB3) method
combined with a Crank‐Nicolson (CN) method,
(24) can be discretized by

Tkþ1 ¼ Tk þDt

12
ð23Fk � 16Fk�1 þ 5Fk�2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

AB3

þDt

2
ðGkþ1 þ GkÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

CN

;

ð25Þ

where all the terms are matrices of size N × M,
corresponding to the values in the interior of the
spherical shell, and Fk and Gk are the respective
approximations to f(T, t) and g(T, t) at the kth time
step and are explicitly given by

Fk ¼ �ðukr � ðTkDrÞ þ uk� � ðD�T
kR�1Þ þ uk� � ðD�T

kR�1ÞÞ
þ LsT

kR�2 þ Bf

Gk ¼ TkLrR
�2 þ Bg; ð26Þ

where � denotes element‐wise matrix multiplica-
tion, and Bf and Bg contain the appropriate terms
from the boundary conditions on T. The abbrevia-
tions for the differentiation matrices are given in
Table 3. The matrices ur

k, u�
k, ul

k are the approxima-
tions to the respective components of the velocity at
the kth time step, while the diagonal matrix R con-
tains the M interior Chebyshev nodes, defined by

Rj; j ¼ 1

2
ðRi þ RoÞþ 1

2
ðRo� RiÞ cos j

M þ 1
�

� �
; j ¼ 1; . . . ;M :

ð27Þ

Equation (25) can be rewritten as

Tkþ1 ¼ Tk þDt

12
ð23Fk � 16Fk�1 þ 5Fk�2Þ þDt

2
Gk

	 

� I �Dt

2
LrR

�2

� ��1

: ð28Þ

As a preprocessing step (I − Dt
2 LrR

−2) is LU decom-
posed and stored. The computational cost of com-
puting (28) is then O(M2N). However, since N is
typically two orders of magnitude larger thanM, the
total cost per time step will be dominated by the
solving the momentum equations (see Appendix A),
calculating the velocity, and computing the values
of Fk and Gk, all of which require O(M N2) opera-
tions. Exact details on each step of the algorithm are
given in Appendix B.

7. Validation on the RBF‐PS Method

[24] In this section, we first consider three bench-
mark studies for 3‐D spherical shell models of
mantle convection with constant viscosity and
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report the first results in the literature from a purely
spectral method run at Ra = 106. Although there are
many numerical methods in the literature for
mantle convection in spherical geometry [Bercovici
et al., 1989; Zhang and Christensen, 1993; Ratcliff
et al., 1996; Richards et al., 2001; Hernlund and
Tackley, 2003; Yoshida and Kageyama, 2004;
Harder and Hansen, 2005; Stemmer et al., 2006;
Choblet et al., 2007; Kameyama et al., 2008; Zhong
et al., 2000, 2008], the obstacle we encountered is
that there is not a set of standardized test cases for
comparison with regard to Ra number and the
viscosity profile. However, there are a number of
published results for Ra = 7000 with constant
viscosity and we compare our method with these.
Above this Ra, there does not seem to be any
consistency in the specifications of the physical
model for testing the numerical methods published
in the literature. Thus, for higher Ra, we have
decided to use Ra = 105 results from the model for
mantle convection, CitcomS, recently reported by
Zhong et al. [2008] as a benchmark comparison.
The only other study in the literature that gives
isoviscous results for this Ra number is by
Ratcliff et al. [1996], which is also included in our
comparison.

7.1. Ra = 7000

[25] The two most common benchmarks for com-
putational models of mantle convection in a spher-
ical shell are the steady state tetrahedral and cubic
test cases. For both of these benchmarks the fluid is
treated as isoviscous andRa is set to 7000. The initial
condition for the temperature is specified as

Tðr; �; �Þ ¼ Riðr � RoÞ
rðRi � RoÞ þ 0:01Y 2

3 ð�; �Þ sin �
r � Ri

Ro � Ri

� �
ð29Þ

for the tetrahedral test case and

Tðr; �; �Þ ¼ Riðr � RoÞ
rðRi � RoÞ

þ 0:01 Y 0
4 ð�; �Þ þ

5

7
Y 4
4 ð�; �Þ

	 

sin �

r � Ri

Ro � Ri

� �
ð30Þ

for the cubic test case, where Y‘
m denotes the nor-

malized spherical harmonic of degree ‘ and orderm.
The first term in each of the initial conditions rep-
resents a purely conductive temperature profile,
while the second terms are perturbations to this
profile and determine the final steady state solution.
The � − l temperature dependence of (29) and (30)
on a spherical shell surface can be seen in Figures 3a
and 3b, respectively.

[26] For this test case, two RBF‐PS simulations are
reported: (1) a higher‐resolution case, in which N =
1600 nodes were used on each spherical surface
(i.e., in the lateral directions) and 23 total Cheby-
shev nodes were used in the radial direction (i.e.,
M = 21 total interior nodes), giving a total of
36,800 nodes, and 2) a lower‐resolution case of
N = 900 and 19 nodes radially (17 interior nodes),
giving a total of 17,100 nodes. A time step of 10−4

was used or 10,000 time steps were taken to reach
steady state at the nondimensionalized time of t =1,
corresponding to roughly 58 times the age of the
Earth. Figures 4a and 4b display the final RBF‐PS
steady state solutions for the tetrahedral and cubic
test cases, respectively, in terms of the residual
temperature dT = T(r, �, l) − hT(r)i, where h i

Table 3. Notation for the Various Differentiation Matrices
Used in the Time‐Differencing Scheme

Matrix Operator Discretization Dimension

Dl
1

cos �
@
@� RBF N × N

D�
@
@� RBF N × N

Ls Ds RBF N × N
Dr

@
@r Chebyshev M × M

Lr @
@r r2 @

@r

� 
Chebyshev M × M

Figure 3. The � − l dependence of the initial condition
for the (a) tetrahedral and (b) cubic mantle convection
test cases.
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denotes averaging over a spherical surface. Since
no analytical solutions exist, validation is done via
comparison to other published results in the liter-
ature with respect to scalar global quantities, such
as Nusselt number at the inner and outer bound-
aries (Nui and Nuo), and the averaged root mean
square velocity and temperature over the volume.
Table 4 contains such a comparison for the RBF‐
PS method with respect to popular methods used in
the mantle convection literature. The following
observations can be can be made:

[27] 1. The only method that is spectral in at least
one direction is the spherical harmonic–finite dif-
ference method of Harder [1998]. In the work by
Stemmer et al. [2006], Harder’s method was used
with Romberg extrapolation to obtain the results to

at least four digits of accuracy. With regard to
almost all quantities for both test cases, the results of
the RBF‐PS method match exactly with Harder’s
extrapolated results.

[28] 2. The number of nodes (degrees of freedom)
needed to accomplish the results in point 1 is an
order of magnitude lower than what was used with
the CitcomS model reported by Zhong et al. [2008],
approximately one and a half orders of magnitude
lower than either the finite volume method by
Stemmer et al. [2006] or the method by Harder
[1998] and three orders of magnitude less than the
Yin‐Yang, multigrid method by Kameyama et al.
[2008]. It should be noted, however, that with
exception to the Stemmer et al. [2006] and Harder
[1998] results, a detailed convergence study was
not performed for these methods to determine the
minimal degrees of freedom needed to achieve their
reported results.

[29] 3. For the scheme to conserve energy Nui =
Nuo, notice that this is the case for both tests even
with such a low number of nodes. This results from
the spectral accuracy of the RBF‐PS method,
which by its shear high‐order convergence, will
inherently dissipate physical quantities less.

[30] 4. Even though we are using Chebyshev
polynomials in the radial direction and an explicit
time‐stepping scheme for the advection term in the
temperature equation, we still can take the same
number of total time steps as Zhong et al. [2008]
(i.e., 10,000).

[31] 5. Even if we decrease the number of nodes by
over 50%, there is only very minor changes in the
results. From our calculations, it seems that at least
17 interior nodes (19 total nodes) are needed in the
radial direction to resolve the flow at Ra = 7000.
Although not reported, we found that in the lateral
direction the number of RBF nodes could be
reduced by another 20% and the values reported
changed only slightly (in the third decimal place).

7.2. Ra = 105

[32] For the isoviscous Ra = 105 case, there are
only two published studies for comparison, the
CitcomS study of Zhong et al. [2008] and Ratcliff
et al. [1996]. Both use the cubic test case initial
condition given by (30) and the model is integrated
to approximately t = 0.3. Since Ra = 105 is a more
convective regime, resulting in thinner plumes
as seen in Figures 5a and 5b, larger resolution
is needed. Thus, we use 43 Chebyshev nodes

Figure 4. Steady state isosurfaces of the residual tem-
perature, dT, at t = 1 for the isoviscous (a) tetrahedral
and (b) cubic mantle convection test cases at Ra =
7000 computed with the RBF‐PS model. Yellow corre-
sponds to dT = 0.15 and denotes upwelling relative to
the average temperature at each radial level, while blue
corresponds to dT = −0.15 and denotes downwelling.
The red solid sphere shows the inner boundary of the
3‐D shell corresponding to the core.
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(41 interior nodes) in the radial direction and 4096
nodes on each spherical surface. Since the time step
is purely restricted by the Chebyshev discretization,
the increase in Chebyshev nodes results in a more
severe CFL criterion that causes a necessary
decrease in the time step. The time step for this
case is 6 × 10−5 for stability or 50,000 time steps to
reach t = 0.3 as opposed to the 35,000 time steps
used by Zhong et al. [2008].

[33] Comparative results are given in Table 5. The
following 5 points are notable:

[34] 1. The difference between Nuo and Nui is
0.14%, showing that we are close to absolute
conservation of energy.

[35] 2. The results of the RBF‐PS method are much
closer to that of Zhong et al. [2008] than to those of
Ratcliff et al. [1996]. We attribute this difference,
most likely, to the underresolution of the runs of
the latter model.

[36] 3. The RBF‐PS uses approximately an order of
magnitude less degrees of freedom than the study
by Zhong et al. [2008].

[37] 4. Once steady state has been reached, differ-
ences between our results and those of Zhong et al.
[2008] are within 0.4% for Nuo and Nui, 0.2% for
hVrmsi, and 0.9% for hTi.
[38] 5. Even during the startup of the model, the
curves for Nuo, hVrmsi, and hTi as a function of
time, are almost indistinguishable from the results
of Zhong et al. [2008], as seen in Figures 6a–6c.

7.3. Ra = 106

[39] Since no results from a purely spectral method
have ever been reported in 3‐D spherical geometry
at Ra = 106, we have decided to include this result.
The common practice at this and larger Ra is to
start the simulation with an initial condition taken
from a simulation run at a lower Ra. The primary

Table 4. Comparison Between Computational Methods for the Isoviscous Tetrahedral and Cubic Mantle Convection Test Cases
With Ra = 7000a

Model Type Nodes r × (� × l) Nuo Nui hVrmsi hTi
Cubic Test Case, Ra = 7000

Zhong et al. [2008] FE 393216 32 × (12 × 32 × 32) 3.6254 3.6016 31.09 0.2176
Yoshida and Kageyama [2004] FD 2122416 102 × (102 × 204) 3.5554 – 30.5197 –
Kameyama et al. [2008] FD 12582912 128 × (2 × 128 × 384) 3.6083 – 31.0741 0.21639
Ratcliff et al. [1996] FV 200000 40 × (50 × 100) 3.5806 – 30.87 –
Stemmer et al. [2006] FV 663552 48 × (6 × 48 × 48) 3.5983 3.5984 31.0226 0.21594
Stemmer et al. [2006] FV Extrap. Extrap. 3.6090 – 31.0709 0.21583
Harder [1998] and
Stemmer et al. [2006]

SP‐FD 552960 120 × (48 × 96) 3.6086 – 31.0765 0.21582

Harder [1998] and
Stemmer et al. [2006]

SP‐FD Extrap. Extrap. 3.6096 – 31.0821 0.21578

RBF‐PS SP 36800 23 × (1600) 3.6096 3.6096 31.0820 0.21577
RBF‐PS SP 17100 19 × (900) 3.6098 3.6098 31.0834 0.21579

Tetrahedral Test Case, Ra = 7000
Zhong et al. [2008] FE 393216 32 × (12 × 32 × 32) 3.5126 3.4919 32.66 0.2171
Yoshida and Kageyama [2004] FD 2122416 102 × (102 × 204) 3.4430 – 32.0481 –
Kameyama et al. [2008] FD 12582912 128 × (2 × 128 × 384) 3.4945 – 32.6308 0.21597
Ratcliff et al. [1996] FV 200000 40 × (50 × 100) 3.4423 – 32.19 –
Stemmer et al. [2006] FV 663552 48 × (6 × 48 × 48) 3.4864 3.4864 32.5894 0.21564
Stemmer et al. [2006] FV Extrap. Extrap. 3.4949 – 32.6234 0.21560
Harder [1998] and
Stemmer et al. [2006]

SP‐FD 552960 120 × (48 × 96) 3.4955 – 32.6375 0.21561

Harder [1998] and
Stemmer et al. [2006]

SP‐FD Extrap. Extrap. 3.4962 – 32.6424 0.21556

RBF‐PS SP 36800 23 × (1600) 3.4962 3.4962 32.6424 0.21556
RBF‐PS SP 17100 19 × (900) 3.4964 3.4963 32.6433 0.21557

aNuo and Nui denote the Nusselt number at the outer and inner spherical surfaces, respectively; hVrmsi denotes the volume‐averaged RMS
velocity over the 3‐D shell; and hT i denotes the mean temperature of the 3‐D shell. Extrap. indicates that the results were obtained using
Romberg extrapolation. Dashes indicate that numbers were not reported. Abbreviations are as follows: FE, finite element; FD, finite difference;
FV, finite volume; SP‐FD, hybrid spectral and finite difference; SP, purely spectral. For the RBF‐PS method, the standard deviation of all the
quantities from the last 1000 time steps was less than 5 × 10−5, which is a standard measure for indicating the model has reached numerical
steady state.
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reason for this is to avoid the extremely high
velocity values that occur at higher Ra during the
initial redistribution of the temperature from a
conductive profile to a convective profile, which
severely restricts the time steps that can be taken.
The initial condition used at Ra = 106 was taken

from a simulation which was started at Ra = 105

with an initial condition consisting of two terms, a
purely conductive temperature profile plus a small
perturbation in the lateral direction that randomly
combined all spherical harmonics up to degree 10.
This latter term was multiplied by the same sine
term in the radial direction as used in the previous
cases. For the discretization, we used 81 Cheby-
shev nodes in the radial direction and 6561 nodes
on each spherical surface, for a total of 531,441
nodes. The Ra = 105 simulation was run until the
large spike in the radial velocity subsided, the Ra
was then increased to 5 × 105 and the simulation
was restarted with the Ra = 105 solution as the
initial condition. This process was repeated once
more and the Ra was then increased to 106 and the
time was reset to 0. The Ra = 106 simulation results
from t = 0 to t = 0.08 (approximately 4 and half times
the age of the Earth), are displayed in Figure 7.
Figure 7a displays the isosurfaces of the residual
temperature at t = 0.08 and clearly shows the mantle
in a purely convective regime. Figures 7b–7d show
the time traces of hTi, hVrmsi, and Nuo and Nui,
respectively. Since this is a purely convective
regime the choice of ending time is somewhat
arbitrary. We chose to stop the simulation at t = 0.08
since by this time the average temperature had
decreased to an acceptable level from its initial
starting value and the influence of the initial con-
dition had diminished.

8. Timing Results

[40] In this short section, runtime results are pre-
sented in Table 6 in order to give the reader a feel
for how long it takes to run the code. All test cases
were conducted on a workstation with one Intel i7
940 2.93 GHz processor, which is a quad core pro-
cessor. The code was written in MATLAB and run
under version 2009b with BLAS multithreading
enabled. 8 GB of memory was also available for
the calculations, although only a fraction of this
was actually used. The results under “total runtime”
in Table 6 include the preprocessing steps in

Figure 5. (a) Steady state isosurface temperature T =
0.5 at time t = 0.3. (b) Steady state isosurface of the
residual temperature, dT = T(r, l, �) − hT(r)i, at t =
0.3 for the isoviscous cubic mantle convection test case
at Ra = 105 computed with the RBF‐PS model. The
same color scheme as Figure 4 has been applied.

Table 5. Comparison Between Computational Methods for the Isoviscous Cubic Mantle Convection Test Case With Ra = 105a

Model Type Nodes r × (� × l) Nuo Nui hVrmsi hTi
Zhong et al.
[2008]

FE 1,327,104 48 × (12 × 48 × 48) 7.8495 (0.0054) 7.7701 (0.001) 154.8 (0.04) 0.1728 (0.0002)

Ratcliff et al.
[1996]

FV 200,000 40 × (50 × 100) 7.5669 – 157.5 –

RBF‐PS SP 176,128 43 × (4096) 7.8120 7.8005 154.490 0.17123
aNumbers in parentheses for Zhong et al. [2008] represent standard deviations. The standard deviation of the results from the last 1000 time steps

for the RBF‐PS model were all less than 5 × 10−5.
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Appendix B, such as setting up the differentiation
matrices and diagonalizing them.

9. Extensions of the Method: High Ra,
Variable Viscosity, and Local Node
Refinement

[41] Each of these extensions requires different
alterations of the method. We discuss them below in
order of increasing complexity in terms of altering
the method.

9.1. High Ra
[42] For simulations at high Ra, the resolution of
the model must of course be increased further. The
most expensive steps in the method are the elliptic
solver and the time step due to the severe CFL
restriction of Chebyshev discretization. With only
moderate losses in accuracy, the time step restric-
tion would be alleviated if sixth‐order implicit (or
compact) finite differences were used instead to
discretize the radial direction. This would be a
minor change to the implementation of the method.
The advantage of a sixth‐order implicit scheme
over a sixth‐order explicit scheme is that (1) the
stencil size is almost 50% less for the same accuracy;
(2) they have smaller error constants; (3) informa-
tion only needs to be extrapolated to one point
outside the boundary; and (4) most importantly,
they have spectral‐like resolution in the sense that
they resolve higher wave numbers [Lele, 1992]. To
date, the authors are not aware of a study that has
employed such a scheme. With regard to the
elliptic solver, global RBFs do not scale well as
high Ra convection is reached (i.e., Ra ∼ O(109)).
However, RBF‐based finite difference schemes
(see section 9.3), already show exceptionally
promising results on spherical surfaces, in terms
computational scaling and accuracy (B. Fornberg
and E. Lehto, A filter approach for stabilizing
RBF‐generated finite difference methods for con-
vective PDEs, manuscript in preparation, 2010;
N. Flyer et al., A radial basis function generated
finite difference method for the unsteady shallow
water equations on a sphere, manuscript in prepa-
ration, 2010).

9.2. Variable Viscosity

[43] To handle variable viscosity (depth and/or
horizontal dependent), the PDEs in their primitive
variables, i.e., (1) and (2), would need to be dis-
cretized. The main difficulty here is not in the

Figure 6. Time plots of the (a) hT i, (b) hVrmsi, and
(c) Nuo, comparing the results (obtained through Com-
putational Infrastructure for Geodynamics (http://www.
geodynamics.org/cig/workinggroups/mc/workarea/
benchmark/3dconvention/)) of the CitcomS and RBF‐PS
for isoviscous mantle convection at Ra = 105.
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discretization of the variable coefficients terms that
appear in (2), which can be handled straightfor-
wardly by the method, but from solving the
resulting coupled equations to ensure that the flow
remains incompressible. This system will be of
saddle point type for which many potential meth-
ods are available (see, for example, the review by
Benzi et al. [2005]). The most promising approach
for the RBF‐PS system, currently being explored
by authors, would use a block factorization of the
discretized momentum and continuity equations,
giving an upper block triangular system and
resulting in a Schur complement problem. To avoid
the excessive computational cost in solving this
system directly at every time step, we would
instead employ a preconditioned Krylov subspace
method (see Benzi et al. [2005, section 10] for a
discussion). A good choice for the preconditioner
might be to use a coarse solution to the isoviscous
problem, as presented by the method in section 5,
since the velocities should be sufficiently smooth
given that they are solutions to Poisson‐type PDEs.

9.3. Local Refinement

[44] Local refinement will take the greatest alter-
ation to the code. Once variables are separated, in
this case (�, l) from r, the result is a tensor‐like
grid and local refinement becomes difficult. For
RBFs, refinement is simple in the sense that the
nodes can be easily clustered [Flyer and Lehto,
2010]. Thus, the next developmental step, which
is currently in progress, is to use 3‐D RBF‐based
finite difference stencils [Wright and Fornberg,
2006] for discretizing the equations. Here, all dif-
ferentiation matrices are based on local high‐order
finite difference‐type stencils that are generated by
means of RBFs from nodes scattered in 3‐D space,
which results in exceptionally sparse matrices to
solve.

10. Summary

[45] This paper develops the first spectral RBF
method for 3‐D spherical geometries in the math/
science literature. Applications of this new hybrid

Figure 7. Results for Ra = 106 test case: (a) Residual
temperature, dT, at t = 0.08, where yellow corresponds
to dT = 0.1, blue corresponds to dT = −0.1, and the
red solid sphere shows the inner boundary of the 3‐D
shell corresponding to the core. (b) Average tempera-
ture, hTi, versus time. (c) Average RMS velocity, hVrmsi,
versus time. (d) Inner and outer Nusselt numbers, Nui
and Nuo, versus time.
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purely spectral methodology are given to the
problem of thermal convection in the Earth’s
mantle, which is modeled by a Boussinesq fluid
at infinite Prandtl number. To see whether this
numerical technique warrants further investigation,
the study limits itself to an isoviscous mantle. Two
Ra number regimes are tested, the classical case in
the literature of Ra = 7000 and the latest results
from the CitcomS model [Zhong et al., 2008] at
Ra = 105. Also, a Ra = 106 simulation is run, as
there are no results in the literature from a purely
spectral model at this Ra. For the Ra = 7000 case,
the method perfectly conserved energy, matched
the extrapolated results of the only other partially
spectral method (reported by Stemmer et al. [2006])
to four or 5 significant digits and used anywhere
between 1 to 3 orders of magnitude less nodes than
other methods. For the Ra = 105 case, the method
almost perfectly conserved energy, and gave results
that differed from CitcomS by 0.2% to 0.9%
(depending on the scalar quantity being measured)
yet required approximately an order of magnitude
less nodes. All calculations were run on a work-
station using a single quad core processor with Ra =
7000 case taking about 8 min and the Ra = 105 case
taking about 6.5 h. Given this outcome, the meth-
odology warrants more extensive testing. It will be
altered to accommodate the PDEs in primitive form
so that variable viscosity and thermochemical
convection can be considered in future test runs.

[46] We conclude by noting that the spectral RBF
method presented here may also be a potentially
promising technique for simulating the geodynamo,
which is well approximated by an isoviscous and
Boussinesq fluid. For the geodynamo, the Prandtl
number is finite and the (now time‐dependent)
momentum and energy equations are coupled to a
time‐dependent induction equation for the magnetic
field [see, e.g., Glatzmaier and Roberts, 1995]. For
the hybrid RBF method, a natural approach would
be to decompose the velocity and magnetic fields
into toroidal and poloidal potentials as is com-
monly done in other models [see, e.g., Christensen
et al., 2001; Glatzmaier and Roberts, 1995; Oishi
et al., 2007]. This decomposition results in a cou-
pled set of time‐dependent parabolic equations and
a set of time‐independent elliptic equations. For the

former, a similar approach to the discretization for
the energy equation discussed in section 6 could be
used, while the latter could be solved using the
technique discussed in Appendix A.

Appendix A: Solution of the Momentum
Equations via Matrix Diagonalization

[47] The two coupled Poisson equations represent-
ing the momentum equations are solved through
matrix diagonalization (i.e., spectral decomposi-
tion) of the RBF surface Laplacian and Chebyshev
radial operators and the influence matrix method
briefly discussed in section 5. In this appendix, we
first show how the two coupled equations in rows 1
and 2 of Table 2 are solved for Wh and Fh. We then
describe the influence matrix method in the spectral
space of the discrete operators We conclude with
details on how the full solution for F is obtained.

[48] If N is the number of nodes on a spherical
surface and M is the number of interior Chebyshev
nodes in the radial direction, then let Wh, Fh 2RN×M

be the respective matrices for the unknown values
of the two potentials at all the interior node points
at time t. Also let T 2 RN×M be the known values of
the temperature at time t. Using the notation from
Table 3 for the RBF differentiation matrix for the
surface Laplacian and the Chebyshev differentiation
matrix for the radial component of the 3‐DLaplacian,
the discrete form of the first two equations in Table 2
is written as

LsWh þ WhLr ¼ Ra T R; ðA1Þ

LsFh þ FhLr ¼ Wh R
2; ðA2Þ

where R is the diagonal matrix given in (27). Now,
letting Ls = VsLsVs

−1 and Lr = VrLrVr
−1 be the spectral

decompositions of the operators Ls and Lr, respec-
tively, (A1) and (A2) can be written, after some
manipulations as

LsðV�1
s WhVrÞ þ ðV�1

s WhVrÞLr ¼ Ra ðV�1
s T RVrÞ;

LsðV�1
s FhVrÞ þ ðV�1

s FhVrÞLr ¼ ðV�1
s WhVrÞðV�1

r R2VrÞ:

Table 6. Runtime Results for the RBF‐PS Method for the Ra = 7000 and Ra = 100,000 Cases on a Single 2.93 GHz Intel i7 940
Quad Core Processor

Test Case
Total Number
of Nodes

Runtime per
Time Step Total Runtime Total Time Steps

Ra = 7000 36,800 0.0516 s 8 min 16 s 10,000 (to t = 1)
Ra = 100,000 176,128 0.44 s 6 h 27 min 50,000 (to t = 0.3)
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By defining bWh = Vs
−1WhVr, bFh = Vs

−1FhVr, bT = Vs
−1T

RVr, and eR2 = Vr
−1R2Vr, the above equations can be

written as the diagonal system of equations

Ls
bWh þ bWhLr ¼ Ra bT ; ðA3Þ

Ls
bFh þ bFhLr ¼ bWheR2: ðA4Þ

The solutions to these equations are given explicitly
as

ðbWhÞi; j ¼ Ra
ðbTÞi; j

ðLsÞi; i þ ðLrÞj; j
and ðbFhÞi; j ¼

ðbWheR2Þi; j
ðLsÞi; i þ ðLrÞj; j

;

ðA5Þ

for i = 1,…, N, and j = 1,…, M.

[49] The operators Ls and Lr are time independent
so that their spectral decompositions can be com-
puted as a preprocessing step. The solution to (A3)
and (A4) thus requires O(MN) operations per time
step. However, the total cost in computing bFh per
time step is dominated by the cost of computing bT
and bWh

eR2, which requires O(MN2) and O(M2N)
operations, respectively. Since N is typically two
orders of magnitude greater than M, the former
computation will dominate everything.

[50] We also apply the influence matrix technique
in spectral space as it allows some reduction in the
storage and computational cost of computing the
final value of F. The setup of this technique is
similar to that described in section 5 in that we look
for a superposition of solutions to the equations.
However, by working in the spectral space of the
lateral operator Ls, the lateral directions can be
decoupled so that the superposition consists only of
three N × M linear systems instead of N:

W ¼ Wh þ W
Ri

bdW
Ri þ W

Ro

bdW
Ro and

F ¼ Fh þ W
Ri

bdF
Ri þ W

Ro

bdF
Ro
; ðA6Þ

where bars indicate the variables are in the spectral
space of the lateral operator Ls only, and Wbd

Ri and
Wbd
Ro are N × N diagonal matrices with the unknown

values for enforcing the boundary conditions. The
values of Wh and Fh, can be obtained by multi-
plying bWh and bFh (computed from (A3) and (A4))
on the right by Vr

−1. The remaining values are
determined from the solution of N independent
two‐point boundary value systems in the radial

direction which correspond to the transform of the
two sets of coupled PDEs in rows 3–6 of Table 2
into the spectral space of Ls. The complete set of
equations can be written in discrete form as

LsW
Ri þ W

RiLr ¼ BRi ;

LsF
Ri þ F

RiLr ¼ W
RieR2;

(
and

LsW
Ro þ W

RoLr ¼ BRo ;

LsF
Ro þ F

RoLr ¼ W
RoeR2;

(
ðA7Þ

where BRi andBRo contain themodifications from the
boundary conditions (WRi)j = 1 at r =Ri and (W

Ro)j = 1
at r = Ro (the remaining boundary conditions on the
variables are homogeneous). The solutions to both
of these systems can be computed by a transfor-
mation into the spectral space of Lr as done in (A3)
and (A4) and then solving a diagonal system. The
total operation for the solution of FRi and FRo can
then be computed in O(M2N) operations. However,
this can be done as a preprocessing step as these
values are time independent.

[51] To find the unknown values on the diagonals
of Wbd

Ri and Wbd
Ro we apply the second set of

boundary conditions in (8) to the right‐hand side of
the F equation in (A6). The discrete set of equa-
tions that result are given by

F
RiDRi

rr

� �
W

Ri

bd þ F
RoDRi

rr

� �
W

Ro

bd ¼ �FhD
Ri
rr ; ðA8Þ

F
RiDRo

rr

� �
W

Ri

bd þ F
RoDRo

rr

� �
W

Ro

bd ¼ �FhD
Ro
rr ; ðA9Þ

where Drr
Ri, Drr

Ro 2 RM×1 are the discrete Chebyshev
second derivative operators in the radial direction
at the inner and outer boundaries, respectively.
Equations (A8) and (A9) correspond to N decoupled
2 × 2 linear system for finding the unknowns.
Thus, all these systems can be solved in O(N)
operations. Furthermore, since FRi and FRo are
time independent the values in parentheses on the
left‐hand side of these equations can be com-
puted as a preprocessing step. The values on the
right‐hand side are time dependent and need to
be computed every time step, which requiresO(MN)
operations.

[52] Once Wbd
Ri and Wbd

Ro are determined, F is com-
puted according to (A6) and then transformed back
into physical space by computing F = VsF. The
computation of F requires O(MN) operations and
the computation of F requires O(MN2) operations.
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Combining this cost with the cost of computingbFh from (A3) and (A4), we see the total compu-
tational cost per time step for computing F will be
O(MN2) operations.

Appendix B: Overview of RBF‐PS
Algorithm
B1. Setup (Preprocessing)

[53] 1. Discretize @
@�,

1
cos �

@
@�, and Ds using colloca-

tion with N RBFs. This will result in 3 N × N
matrices, D�, Dl, and Ls (see sections 4.1 and 4.2).

[54] 2. Discretize @
@r ;

@
@r r2 @

@r

� 
; @2

@r2

���
r¼Ri

; and @2

@r2

���
r¼Ro

using collocation with M + 2 Chebyshev poly-
nomials. Since these are only applied on the inte-
rior of the shell, this will result in 2M ×M matrices
Dr and Lr for the first two operators, and 2 M × 1
vectors for the last two.

[55] 3. Form the M × M diagonal matrices R
(see (27)) and R2.

[56] 4. LU decompose the M × M matrix (I − Dt/
2LrR

−2) for the AB3‐CN time stepping method (see
section 6), where I is the M × M identity matrix.

[57] 5. Momentum equations:
i. Compute the spectral decomposition of Ls and

Lr (see Appendix A). This results in the following
matrices: 1 full N × N (Vs), 1 diagonal N × N (Ls),
1 full M × M (Vr), and 1 diagonal M × M (Lr).

ii. Compute the inverses of Vr and Vs.
iii. Compute the fullM ×Mmatrix eR2 = Vr

−1R2Vr.
iv. Solve (A7) for FRi and FRo, which results in 2

N × M matrices.
v. Compute the influence matrix entries FRiDrr

Ri,
FRiDrr

Ro, FRoDrr
Ri, and FRoDrr

Ro from (A8) and (A8).
This results in 4 vectors of length N.

B2. Execution

[58] 1. Momentum equations:
i. With the temperature Tk at the kth time step,

calculate bFh (i.e., Fh in the spectral space of both
the operators Ls and Lr) according to (A5).

ii. Calculate Fh = bFhVr
−1 (i.e., Fh in the spectral

space of Ls only).
iii. Solve for the influence matrix system (A7)

for the unknowns Wbd
Ri and Wbd

Ro.
iv. Compute F by updating Fh with the influ-

ence matrix terms according to (A6).
v. Compute F = Vs F to find the poloidal

potential in physical space.

vi. Compute the velocity field (9), which can be
written

u ¼ ðLsFR�1|fflfflfflffl{zfflfflfflffl}
ur

;D�FRDrR
�1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

u�

;D�FRDrR
�1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

u�

Þ:

[59] 2. Compute the Fk and Gk in (26) with the
velocity field from the previous step and the tem-
perature Tk.

[60] 3. Solve (28) for the temperature at the next
time step, Tk+1, and repeat step 1 with this new
temperature.
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