12 research outputs found

    The Great War of Today: Modifications of CAR-T Cells to Effectively Combat Malignancies

    No full text
    Immunotherapy of cancer had its early beginnings in the times when the elements of the immune system were still poorly characterized. However, with the progress in molecular biology, it has become feasible to re-engineer T cells in order to eradicate tumour cells. The use of synthetic chimeric antigen receptors (CARs) helped to re-target and simultaneously unleash the cytotoxic potential of T cells. CAR-T therapy proved to be remarkably effective in cases of haematological malignancies, often refractory and relapsed. The success of this approach yielded two Food and Drug Administration (FDA) approvals for the first “living drug” modalities. However, CAR-T therapy is not without flaws. Apart from the side effects associated with the treatment, it became apparent that CAR introduction alters T cell biology and the possible therapeutic outcomes. Additionally, it was shown that CAR-T approaches in solid tumours do not recapitulate the success in the haemato-oncology. Therefore, in this review, we aim to discuss the recent concerns of CAR-T therapy for both haematological and solid tumours. We also summarise the general strategies that are implemented to enhance the efficacy and safety of the CAR-T regimens in blood and solid malignancies

    A New Approach to Border Irregularity Assessment with Application in Skin Pathology

    No full text
    The border irregularity assessment of tissue structures is an important step in medical diagnostics (e.g., in dermatoscopy, pathology, and cardiology). The diagnostic criteria based on the degree of uniformity and symmetry of border irregularities are particularly vital in dermatopathology, to distinguish between benign and malignant skin lesions. We propose a new method for the segmentation of individual border projections and measuring their morphometry. It is based mainly on analyzing the curvature of the object’s border to identify endpoints of projection bases, and on analyzing object’s skeleton in the graph representation to identify bases of projections and their location along the object’s main axis. The proposed segmentation method has been tested on 25. skin whole slide images of common melanocytic lesions. In total, 825. out of 992. (83.%) manually segmented retes (projections of epidermis) were detected correctly and the Jaccard similarity coefficient for the task of detecting retes was 0.798. Experimental results verified the effectiveness of the proposed approach. Our method is particularly well suited for assessing the border irregularity of human epidermis and thus could help develop computer-aided diagnostic algorithms for skin cancer detection

    Intraurethral co-transplantation of bone marrow mesenchymal stem cells and muscle-derived cells improves the urethral closure

    No full text
    Abstract Background Cell therapy constitutes an attractive alternative to treat stress urinary incontinence. Although promising results have been demonstrated in this field, the procedure requires further optimization. The most commonly proposed cell types for intraurethral injections are muscle derived cells (MDCs) and mesenchymal stem/stromal cell (MSCs). The aim of this study was to evaluate the effects of MDC-MSC co-transplantation into the urethra. Methods Autologous transplantation of labeled MDCs, bone marrow MSCs or co-transplantation of MDC-MSC were performed in aged multiparous female goats (n = 6 in each group). The mean number of cells injected per animal was 29.6 × 106(± 4.3 × 106). PBS-injected animals constituted the control group (n = 5). Each animal underwent urethral pressure profile (UPP) measurements before and after the injection procedure. The maximal urethral closure pressure (MUCP) and functional area (FA) of UPPs were calculated. The urethras were collected at the 28th or the 84th day after transplantation. The marker fluorochrome (DID) was visualized and quantified using in vivo imaging system in whole explants. Myogenic differentiation of the graft was immunohistochemically evaluated. Results The grafted cells were identified in all urethras collected at day 28 regardless of injected cell type. At this time point the strongest DID-derived signal (normalized to the number of injected cells) was noted in the co-transplanted group. There was a distinct decline in signal intensity between day 28 and day 84 in all types of transplantation. Both MSCs and MDCs contributed to striated muscle formation if transplanted directly to the external urethral sphincter. In the MSC group those events were rare. If cells were injected into the submucosal region they remained undifferentiated usually packed in clearly distinguishable depots. The mean increase in MUCP after transplantation in comparison to the pre-transplantation state in the MDC, MSC and MDC-MSC groups was 12.3% (± 11.2%, not significant (ns)), 8.2% (± 9.6%, ns) and 24.1% (± 3.1%, p = 0.02), respectively. The mean increase in FA after transplantation in the MDC, MSC and MDC-MSC groups amounted to 17.8% (± 15.4%, ns), 15.2% (± 12.9%, ns) and 17.8% (± 2.5%, p = 0.04), respectively. Conclusions The results suggest that MDC-MSC co-transplantation provides a greater chance of improvement in urethral closure than transplantation of each population alone

    Intrinsic functional potential of NK-Cell subsets constrains retargeting driven by chimeric antigen receptors

    No full text
    Natural killer (NK) cells hold potential as a source of allogeneic cytotoxic effector cells for chimeric antigen receptor (CAR)-mediated therapies. Here, we explored the feasibility of transfecting CAR-encoding mRNA into primary NK cells and investigated how the intrinsic potential of discrete NK-cell subsets affects retargeting efficiency. After screening five second- and third-generation anti-CD19 CAR constructs with different signaling domains and spacer regions, a third-generation CAR with the CH2-domain removed was selected based on its expression and functional profiles. Kinetics experiments revealed that CAR expression was optimal after 3 days of IL15 stimulation prior to transfection, consistently achieving over 80% expression. CAR-engineered NK cells acquired increased degranulation toward CD19+ targets, and maintained their intrinsic degranulation response toward CD19− K562 cells. The response of redirected NK-cell subsets against CD19+ targets was dependent on their intrinsic thresholds for activation determined through both differentiation and education by killer cell immunoglobulin-like receptors (KIR) and/or CD94/NKG2A binding to self HLA class I and HLA-E, respectively. Redirected primary NK cells were insensitive to inhibition through NKG2A/HLA-E interactions but remained sensitive to inhibition through KIR depending on the amount of HLA class I expressed on target cells. Adaptive NK cells, expressing NKG2C, CD57, and self-HLA–specific KIR(s), displayed superior ability to kill CD19+, HLA low, or mismatched tumor cells. These findings support the feasibility of primary allogeneic NK cells for CAR engineering and highlight a need to consider NK-cell diversity when optimizing efficacy of cancer immunotherapies based on CAR-expressing NK cells

    Serine biosynthesis pathway supports MYC-miR-494-EZH2 feed-forward circuit necessary to maintain metabolic and epigenetic reprogramming of burkitt lymphoma cells

    Get PDF
    Burkitt lymphoma (BL) is a rapidly growing tumor, characterized by high anabolic requirements. The MYC oncogene plays a central role in the pathogenesis of this malignancy, controlling genes involved in apoptosis, proliferation, and cellular metabolism. Serine biosynthesis pathway (SBP) couples glycolysis to folate and methionine cycles, supporting biosynthesis of certain amino acids, nucleotides, glutathione, and a methyl group donor, S-adenosylmethionine (SAM). We report that BLs overexpress SBP enzymes, phosphoglycerate dehydrogenase (PHGDH) and phosphoserine aminotransferase 1 (PSAT1). Both genes are controlled by the MYC-dependent ATF4 transcription factor. Genetic ablation of PHGDH/PSAT1 or chemical PHGDH inhibition with NCT-503 decreased BL cell lines proliferation and clonogenicity. NCT-503 reduced glutathione level, increased reactive oxygen species abundance, and induced apoptosis. Consistent with the role of SAM as a methyl donor, NCT-503 decreased DNA and histone methylation, and led to the re-expression of ID4, KLF4, CDKN2B and TXNIP tumor suppressors. High H3K27me3 level is known to repress the MYC negative regulator miR-494. NCT-503 decreased H3K27me3 abundance, increased the miR-494 level, and reduced the expression of MYC and MYC-dependent histone methyltransferase, EZH2. Surprisingly, chemical/genetic disruption of SBP did not delay BL and breast cancer xenografts growth, suggesting the existence of mechanisms compensating the PHGDH/PSAT1 absence in vivo

    Inhibition of thioredoxin-dependent H2O2 removal sensitizes malignant B-cells to pharmacological ascorbate

    No full text
    L-ascorbate (L-ASC) is a widely-known dietary nutrient which holds promising potential in cancer therapy when given parenterally at high doses. The anticancer effects of L-ASC involve its autoxidation and generation of H2O2, which is selectively toxic to malignant cells. Here we present that thioredoxin antioxidant system plays a key role in the scavenging of extracellularly-generated H2O2 in malignant B-cells. We show that inhibition of peroxiredoxin 1, the enzyme that removes H2O2 in a thioredoxin system-dependent manner, increases the sensitivity of malignant B-cells to L-ASC. Moreover, we demonstrate that auranofin (AUR), the inhibitor of the thioredoxin system that is used as an antirheumatic drug, diminishes the H2O2-scavenging capacity of malignant B-cells and potentiates pharmacological ascorbate anticancer activity in vitro and in vivo. The addition of AUR to L-ASC-treated cells triggers the accumulation of H2O2 in the cells, which results in iron-dependent cytotoxicity. Importantly, the synergistic effects are observed at as low as 200 µM L-ASC concentrations. In conclusion, we observed strong, synergistic, cancer-selective interaction between L-ASC and auranofin. Since both of these agents are available in clinical practice, our findings support further investigations of the efficacy of pharmacological ascorbate in combination with auranofin in preclinical and clinical settings

    Targeting the thioredoxin system as a novel strategy against B cell acute lymphoblastic leukemia.

    Get PDF
    B cell precursor acute lymphoblastic leukemia (BCP-ALL) is a genetically heterogeneous blood cancer characterized by abnormal expansion of immature B cells. Although intensive chemotherapy provides high cure rates in a majority of patients, subtypes harboring certain genetic lesions, such as MLL rearrangements or BCR-ABL1 fusion, remain clinically challenging, necessitating a search for other therapeutic approaches. Herein, we aimed to validate antioxidant enzymes of the thioredoxin system as potential therapeutic targets in BCP-ALL. We observed oxidative stress along with aberrant expression of the enzymes associated with the activity of thioredoxin antioxidant system in BCP-ALL cells. Moreover, we found that auranofin and adenanthin, inhibitors of the thioredoxin system antioxidant enzymes, effectively kill BCP-ALL cell lines and pediatric and adult BCP-ALL primary cells, including primary cells co-cultured with bone marrow-derived stem cells. Furthermore, auranofin delayed the progression of leukemia in MLL-rearranged patient-derived xenograft model and prolonged the survival of leukemic NSG mice. Our results unveil the thioredoxin system as a novel target for BCP-ALL therapy, and indicate that further studies assessing the anticancer efficacy of combinations of thioredoxin system inhibitors with conventional anti BCP-ALL drugs should be continued

    HDAC6 inhibition upregulates CD20 levels and increases the efficacy of anti-CD20 monoclonal antibodies

    No full text
    Downregulation of CD20, a molecular target for monoclonal antibodies (mAbs), is a clinical problem leading to decreased efficacy of anti-CD20-based therapeutic regimens. The epigenetic modulation of CD20 coding gene (MS4A1) has been proposed as a mechanism for the reduced therapeutic efficacy of anti-CD20 antibodies and confirmed with nonselective histone deacetylase inhibitors (HDACis). Because the use of pan-HDACis is associated with substantial adverse effects, the identification of particular HDAC isoforms involved in CD20 regulation seems to be of paramount importance. In this study, we demonstrate for the first time the role of HDAC6 in the regulation of CD20 levels. We show that inhibition of HDAC6 activity significantly increases CD20 levels in established B-cell tumor cell lines and primary malignant cells. Using pharmacologic and genetic approaches, we confirm that HDAC6 inhibition augments in vitro efficacy of anti-CD20 mAbs and improves survival of mice treated with rituximab. Mechanistically, we demonstrate that HDAC6 influences synthesis of CD20 protein independently of the regulation of MS4A1 transcription. We further demonstrate that translation of CD20 mRNA is significantly enhanced after HDAC6 inhibition, as shown by the increase of CD20 mRNA within the polysomal fraction, indicating a new role of HDAC6 in the posttranscriptional mechanism of CD20 regulation. Collectively, our findings suggest HDAC6 inhibition is a rational therapeutic strategy to be implemented in combination therapies with anti-CD20 monoclonal antibodies and open up novel avenues for the clinical use of HDAC6 inhibitors
    corecore