62 research outputs found

    Search for cold gas in clusters with and without cooling flows

    Get PDF
    The dominant galaxy in each of approx. 40 clusters was studied using co-added Infrared Astronomy Satellite (IRAS) survey data, and 11 of these galaxies were observed for CO (J=1 to 0) emission with the 12 m telescope at Kitt Peak. Half of the galaxies in the sample are in clusters reported to have cooling flows while the other half are not. Six of the galaxies appear to have been detected by IRAS at fairly low flux levels, in addition to one previously known strong detection; all seven have reported cooling flows. No detectable CO emission (to 2 to 3 mK) was found in any of the 11 galaxies observed. Assuming accretion rates of approx. 100 Solar Mass yr(-1), the star formation rates and efficiencies in these galaxies must be quite high in order to render the CO undetectable. At the same time, the infrared luminosities of these galaxies is unremarkable, suggesting that the correlation between star formation efficiency and infrared luminosity found for spirals may not hold for cooling flows

    Molecular clouds in the Carina arm

    Get PDF
    Results from the first large-scale survey in the CO(J = 1 to 0) line of the Vela-Carina-Centaurus region of the Southern Milky Way are reported. The observations, made with the Columbia University 1.2 m millimeter-wave telescope at Cerro Tololo, were spaced every beamwidth (0.125 deg) in the range 270 deg is less than or = l is less than or = 300 deg and -1 deg less than or = b less then or = 1 deg, with latitude extensions to cover all Carina arm emission beyond absolute b = 1 deg. In a concurrent survey made with the same telescope, every half-degree in latitude and longitude was sampled. Both surveys had a spectral coverage of 330 km/s with a resolution of 1.3 km/s. The Carina arm is the dominant feature in the data. Its abrupt tangent at l is approx. = 280 deg and characteristic loop in the l,v diagram are unmistakable evidence for CO spiral structure. When the emission is integrated over velocity and latitude, the height of the step seen in the tangent direction suggests that the arm-interarm contrast is at least 13:1. Comparison of the CO and H I data shows close agreement between these two species in a segment of the arm lying outside the solar circle. The distribution of the molecular layer about the galactic plane in the outer Galaxy is determined. Between R = 10.5 and 12.5 kpc, the average CO midplane dips from z = -48 to -167 pc below the b = 0 deg plane, following a similar well-known warping of the H I layer. In the same range of radii the half-thickness of the CO layer increases from 112 to 182 pc. Between l = 270 deg and 300 deg, 27 molecular clouds are identified and cataloged along with heliocentric distances and masses. An additional 16 clouds beyond 300 deg are cataloged from an adjoining CO survey made with the same telescope. The average mass for the Carina arm clouds is 1.4x 10(6)M (solar), and the average intercloud spacing along the arm is 700 pc. Comparison of the distribution of the Carina arm clouds with that of similarly massive molecular clouds in the first and second quadrants strongly suggests that the Carina and Sagittarius arms form a single spiral arm approx. 40 kpc long wrapping two-thirds of the way around the Galaxy

    Star formation in Carina OB1: Observations of a giant molecular cloud associated with the eta Carinae Nebula

    Get PDF
    A giant molecular cloud associated with the eta Carinae nebula was fully mapped in CO with the Columbia Millimeter-Wave Telescope at Cerro Tololo. The cloud comples has a mass of roughly 700,000 solar mass and extends about 140 pc along the Galactic plane, with the giant Carina HII region situated at one end of the complex. Clear evidence of interaction between the HII region and the molecular cloud is found in the relative motions of the ionized gas, the molecular gas, and the dust; simple energy and momentum considerations suggest that the HII region is responsible for the observed motion of a cloud fragment. The molecular cloud complex appears to be the parent material of the entire Car OB1 Association which, in addition to the young clusters in the Carine nebula, includes the generally older cluster NGC 3325, NGC 3293, and IC 2581. The overall star formation efficiency in the cloud complex is estimated to be approximately 0.02

    Hard X-Rays From Supernova 1993J

    Get PDF
    The OSSE experiment on the Compton Observatory observed SN 1993J during three intervals, approximately 9--15, 23--36, and 93--121 days after outburst. There is evidence for continuum emission below 200 keV in the first two of these periods. Power-law fits yield intensities at 100 keV of (1.82+/-0.39)*E(-3) photons cm(-2) s(-1) MeV(-1) and (0.89+/-0.35)*E(-3) photons cm(-2) s(-1) MeV(-1) , and photon indices of -2.3+/-0.5 and -2.2+/-0.9, respectively. There is no evidence for any emission in the longer, more sensitive, third observation. These continua are too bright and too steep to be entirely due to Comptonized gamma-rays from radioactive (56) Ni and (56) Co alone. A thermal bremsstrahlung spectrum, for example, also adequately describes the OSSE data, with kT =~ 75 keV. These continua extrapolate well above nearly contemporaneous measurements at lower energies. Instead, a power-law of fixed photon index -1.2 fit to the first OSSE observation extrapolates approximately to the total luminosity measured by ASCA (Tanaka IAU Circ. 5753) from 1--10 keV, one day earlier. For a thermal spectrum a higher temperature, near 200 keV, can also fit both data sets---but only marginally. This emission cannot be unambiguously attributed to SN 1993J. Because of the large OSSE field of view, SN 1993J cannot be separated from other sources such as the nucleus of M81 or even M82. However, OSSE did observe this region twice earlier, 597 and 443 days before SN 1993J and no continuum emission was detected at either time. The apparent decline of the emission does seem to correlate well with those of SN 1993J as seen by ASCA and ROSAT. No evidence for line emission is seen in any observation. This work is supported by NASA DPR S-10987C

    OSSE observations of galactic 511 keV annihilation radiation

    Get PDF
    The Oriented Scintillation Spectrometer Experiment (OSSE) on the Compton Gamma-Ray Observatory has performed several observations of the galactic plane and galactic center region to measure the distribution of galactic 511 keV positron annihilation radiation. Preliminary analysis of data collected during the observation of the galactic center region over the period 13-24 Jun. 1991, indicates the presence of a 511 keV line and positronium continuum superimposed on a power-law continuum. The line of flux was found to be (2.7 +/- 0.5) x 10(exp -4) gamma/sq cm sec, with a positronium fraction of (0.9 +/- 0.2). The 3(sigma) upper limit to daily variations in the 511 keV line flux from the mean during the observation interval is 3 x 10(exp -4) gamma/sq cm sec. If all of the observed annihilation radiation is assumed to originate from the x-ray source 1E 1740.7-2942, the corresponding 511 keV line flux would be (3.0 +/- 0.6) x 10(exp -4) gamma/sq cm sec. The 3(sigma) upper limit for 511 keV line emission from the x-ray binary GX1+4 is 6 x 10(exp -4) gamma/sq cm sec. Results from the galactic plane observations at galactic longitudes of 25 degrees (16-21 Aug. 1991) and 339 degrees (6-11 Sep. 1991) suggest that the emission is concentrated near the galactic center. The observations and the preliminary results are described

    OSSE spectral analysis techniques

    Get PDF
    Analysis of the spectra from the Oriented Scintillation Spectrometer Experiment (OSSE) is complicated because of the typically low signal to noise (approx. 0.1 percent) and the large background variability. The OSSE instrument was designed to address these difficulties by periodically offset-pointing the detectors from the source to perform background measurements. These background measurements are used to estimate the background during each of the source observations. The resulting background-subtracted spectra can then be accumulated and fitted for spectral lines and/or continua. Data selection based on various environmental parameters can be performed at various stages during the analysis procedure. In order to achieve the instrument's statistical sensitivity, however, it will be necessary for investigators to develop a detailed understanding of the instrument operation, data collection, and the background spectrum and its variability. A brief description of the major steps in the OSSE spectral analysis process is described, including a discussion of the OSSE background spectrum and examples of several observational strategies

    Constraints on the galactic distribution of cosmic rays from the COS-B gamma-ray data

    Get PDF
    The diffuse component of the galactic high energy gamma rays results mainly from the interaction of CR nuclei and electrons with the nuclei of the interstellar gas. An additional contribution is obtained from the interaction of CR electrons with the interstellar photons through the inverse-Compton (IC) process. Gamma ray astronomy therefore offers an excellent means to study the distribution of CR particles throughout the Galaxy, but it is essential to know the distribution of the target interstellar gas particles, the major constituents being atomic and molecular hydrogen. Large scale millimeter wave surveys of the CO molecule covering more than half of the Milky Way, obtained with the Columbia 1.2 m telescopes, are currently available and are used to trace the H2; the COS-B observations have sufficient resolution and sensitivity to constrain the relation between the integrated CO line intensity and the molecular hydrogen column density

    The Oriented Scintillation Spectrometer Experiment - Instrument Description

    Get PDF
    The Oriented Scintillation Spectrometer Experiment on the Arthur Holly Compton Gamma Ray Observatory satellite uses four actively shielded NaI (Tl)-CsI(Na) phoswich detectors to provide gamma-ray line and continuum detection capability in the 0.05-10 MeV energy range. The instrument includes secondary capabilities for gamma-ray and neutron detection between 10 and 250 MeV. The detectors have 3.8 deg x 11.04 deg (FWHM) fields of view defined by tungsten collimators. Each detector has an independent, single-axis orientation system which permits offset pointing from the spacecraft Z-axis for background measurements and multitarget observations. The instrument, and its calibration and performance, are described

    Hard X-ray emission of the microquasar GX 339-4 in the low/hard state

    Get PDF
    We present the analysis of the high-energy emission of the Galactic black hole binary GX 339-4 in a low/hard state at the beginning of its 2004 outburst. The data from 273 ks of INTEGRAL observations, spread over 4 weeks, are analyzed, along with the existing simultaneous RXTE HEXTE and PCA data. During this period, the flux increases by a factor of ~=3, while the spectral shape is quite unchanged, at least up to 150 keV. The high-energy data allow us to detect the presence of a high-energy cutoff, generally related to thermal mechanisms, and to estimate the plasma parameters in the framework of the Comptonization models. We found an electron temperature of 60-70 keV and an optical depth of around 2.5, with a rather low reflection factor (0.2-0.4). In the last observation, we detected a high-energy excess above 200 keV with respect to thermal Comptonization, while at lower energies the spectrum is practically identical to the previous one taken just 2 days before. This suggests that the low- and high-energy components have a different origin

    Gamma-ray observations of NGC 253 and M82 with OSSE

    Get PDF
    Gamma-ray observations of the nearby starburst galaxies NGC 253 and M82 over the energy range (0.05-10) MeV have been obtained with the Oriented Scintillation Spectrometer Experiment (OSSE) spectrometer on the Compton Gamma-Ray Observatory (CGRO). The priority of these galaxies as OSSE targets had been established on the grounds that the average supernova rate may be high in starbursts as indicated by infrared and radio observations, and at distances of approximately 3 Mpc a significant chance of supernova gamm-ray line detection exists. NGC 253 was detected in continuum emission up to 165 keV with a total significance of 4.4 sigma and an estimated luminosity of 3 x 1040 ergs/s. The spectrum is best fit by a power law of photon index approximately 2.5. We consider the possible contribution of different emission mechanisms, including inverse Compton scattering, bremsstrahlung, discrete sources, and Type Ia/Ib supernova continuum to the measured flux. No significant continuum flux was observed from M82. A search for the gamma-ray line from the decay of the most abundant radioactive element produced in supernovae (Ni-56 yields Co-56 yields Fe-56) yielded no significant detection: the 3 sigma upper limits to the line fluxes at 0.158, 0.812, 0.847, and 1.238 MeV for both galaxies are obtained
    corecore