56 research outputs found

    ΠœΠΠ’Π•Π Π˜ΠΠ›Π« Π­Π›Π•ΠšΠ’Π ΠžΠœΠΠ“ΠΠ˜Π’ΠΠžΠ™ И Π ΠΠ”Π˜ΠΠ¦Π˜ΠžΠΠΠžΠ™ Π—ΠΠ©Π˜Π’Π« Π”Π›Π― Π˜Π—Π”Π•Π›Π˜Π™ Π­Π›Π•ΠšΠ’Π ΠžΠΠ˜ΠšΠ˜

    Get PDF
    Electromagnetic (EMR) and ionizing (IR) radiation are one of the main destabilizing factors which affect functional equipment of space-rocket, aviation and ground-based complexes. Therefore, the direction of physical materials science, associated with the development of new materials and technologies for high-efficiency electromagnetic and radiation protection is of current interest. In the Scientific and Practical Materials Research Center of the National Academy of Sciences of Belarus new materials and technological processes for the formation of electromagnetic and radiation protection of the devices packages and elements of a wide range of purposes have been developed.Β A constant magnetic field and a powerful electromagnetic pulse are the most difficult variants for protection against EMR. Symmetric and gradient multilayer film structures are the promising materials for solving this problem. Thus, experimental results on the investigation of the efficiency of electromagnetic shields based on the structures of the system (Fe–Co–Ni)/Cu in a constant magnetic field, low-frequency and pulsed EMR are considered. It is shown that while choosing materials for magnetostatic shields, the main magnetic characteristics and the role of the inhomogeneity of the magnetic field in the shield volume and the nonlinearity of the magnetic permeability should be considered. It is concluded about the high efficiency of attenuation of microsecond duration pulsed magnetic fields by the gradient structures, which are 58Γ·40 dB at the magnetic field strengths of 1.25Γ·12.0 kA/m, respectively. A composite material based on the tungsten-copper system is proposed for electronic components and integrated circuits protection from the effects of IR. It is demonstrated that radiation shields based on it provide the effective protection against electron- and proton radiation with energies up to 2 MeV and up to 500 MeV, respectively. The practical application results of developed materials and technologies are given.Π­Π»Π΅ΠΊΡ‚Ρ€ΠΎΠΌΠ°Π³Π½ΠΈΡ‚Π½Ρ‹Π΅ (ЭМИ) ΠΈ ΠΈΠΎΠ½ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ (ИИ) излучСния ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΎΠ΄Π½ΠΈΠΌΠΈ ΠΈΠ· основных Π΄Π΅ΡΡ‚Π°Π±ΠΈΠ»ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ², Π²ΠΎΠ·Π΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… Π½Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ ΠΎΠ±ΠΎΡ€ΡƒΠ΄ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ€Π°ΠΊΠ΅Ρ‚Π½ΠΎ-космичСских, Π°Π²ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΈ Π½Π°Π·Π΅ΠΌΠ½Ρ‹Ρ… комплСксов. Π’ связи с этим Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ физичСского матСриаловСдСния, связанноС с созданиСм Π½ΠΎΠ²Ρ‹Ρ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² ΠΈ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ для высокоэффСктивной элСктромагнитной ΠΈ Ρ€Π°Π΄ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ Π·Π°Ρ‰ΠΈΡ‚Ρ‹, являСтся Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½Ρ‹ΠΌ. Π’ Научно-практичСском Ρ†Π΅Π½Ρ‚Ρ€Π΅ ΠΠ°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ Π°ΠΊΠ°Π΄Π΅ΠΌΠΈΠΈ Π½Π°ΡƒΠΊ БСларуси ΠΏΠΎ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡŽ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Ρ‹ Π½ΠΎΠ²Ρ‹Π΅ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ тСхнологичСскиС процСссы формирования элСктромагнитной ΠΈ Ρ€Π°Π΄ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ Π·Π°Ρ‰ΠΈΡ‚Ρ‹ Π½Π° корпусах ΠΏΡ€ΠΈΠ±ΠΎΡ€ΠΎΠ² ΠΈ элСмСнтов ΡˆΠΈΡ€ΠΎΠΊΠΎΠ³ΠΎ спСктра назначСния. НаиболСС слоТными Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π°ΠΌΠΈ для Π·Π°Ρ‰ΠΈΡ‚Ρ‹ ΠΎΡ‚ ЭМИ ΡΠ²Π»ΡΡŽΡ‚ΡΡ постоянноС ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ΅ ΠΏΠΎΠ»Π΅ ΠΈ ΠΌΠΎΡ‰Π½Ρ‹ΠΉ элСктро- ΠΌΠ°Π³Π½ΠΈΡ‚Π½Ρ‹ΠΉ ΠΈΠΌΠΏΡƒΠ»ΡŒΡ. ΠŸΠ΅Ρ€ΡΠΏΠ΅ΠΊΡ‚ΠΈΠ²Π½Ρ‹Π΅ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π΄Π°Π½Π½ΠΎΠΉ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹ – многослойныС ΠΏΠ»Π΅Π½ΠΎΡ‡Π½Ρ‹Π΅ структуры симмСтричного ΠΈ Π³Ρ€Π°Π΄ΠΈΠ΅Π½Ρ‚Π½ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠΎΠ². Π’ связи с этим рассмотрСны ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΏΠΎ исслСдованию эффСктивности элСктромагнитных экранов Π½Π° основС структур систСмы (Fe–Co–Ni)/Cu Π² постоянном ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠΌ ΠΏΠΎΠ»Π΅, низкочастотном ΠΈ ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ½ΠΎΠΌ ЭМИ. Показано, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ Π²Ρ‹Π±ΠΎΡ€Π΅ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² для магнитостатичСских экранов слСдуСт ΡƒΡ‡ΠΈΡ‚Ρ‹Π²Π°Ρ‚ΡŒ ΠΊΠ°ΠΊ основныС ΠΌΠ°Π³Π½ΠΈΡ‚Π½Ρ‹Π΅ характСристики, Ρ‚Π°ΠΊ ΠΈ Ρ€ΠΎΠ»ΡŒ нСоднородности ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ поля Π² объСмС экрана ΠΈ Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΡΡ‚ΡŒ ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠΉ проницаСмости. Π‘Π΄Π΅Π»Π°Π½ Π²Ρ‹Π²ΠΎΠ΄ ΠΎ высокой эффСктивности ослаблСния Π³Ρ€Π°Π΄ΠΈΠ΅Π½Ρ‚Π½Ρ‹ΠΌΠΈ структурами ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ½Ρ‹Ρ… ΠΌΠ°Π³Π½ΠΈΡ‚Π½Ρ‹Ρ… ΠΏΠΎΠ»Π΅ΠΉ микросСкундной Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ, ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰ΠΈΡ… 58Γ·40 Π΄Π‘ ΠΏΡ€ΠΈ значСниях напряТСнностСй ΠΌΠ°Π³Π½ΠΈΡ‚Π½Ρ‹Ρ… ΠΏΠΎΠ»Π΅ΠΉ 1,25Γ·12,0 кА/ΠΌ соотвСтствСнно. Для Π·Π°Ρ‰ΠΈΡ‚Ρ‹ элСктронных ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² ΠΈ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… микросхСм ΠΎΡ‚ воздСйствия ИИ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ†ΠΈΠΎΠ½Π½Ρ‹ΠΉ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» Π½Π° основС систСмы Π²ΠΎΠ»ΡŒΡ„Ρ€Π°ΠΌβ€“ΠΌΠ΅Π΄ΡŒ. Показано, Ρ‡Ρ‚ΠΎ Ρ€Π°Π΄ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Π΅ экраны, ΠΈΠ·Π³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½Π½Ρ‹Π΅ Π½Π° Π΅Π³ΠΎ основС, эффСктивно Π·Π°Ρ‰ΠΈΡ‰Π°ΡŽΡ‚ ΠΎΡ‚ элСктронного ΠΈ ΠΏΡ€ΠΎΡ‚ΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΈΠ·Π»ΡƒΡ‡Π΅Π½ΠΈΠΉ с энСргиями Π΄ΠΎ 2 ΠœΡΠ’ ΠΈ Π΄ΠΎ 500 ΠœΡΠ’ соотвСтствСнно. ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ практичСского примСнСния Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹Ρ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² ΠΈ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ.

    Eye-Safe Solid-State Quasi-CW Raman Laser with Millisecond Pulse Duration

    Full text link
    We demonstrate the first quasi-CW (ms-long pulses, pump duty cycle of 10%) end-diode pumped solid state laser generating eye-safe radiation via intracavity Raman conversion. The output power at the first Stokes wavelength (1524 nm) was 250 mW. A theoretical model was applied to analyze the laser system and provide routes for optimization. The possibility of true CW operation was discussed.Comment: Preprint accepted for publication in Optics Communications on Feb 6, 201

    Multilayer film shields for the protection of PMT from constant magnetic field

    Get PDF
    This is the Published Version made available with the permission of the publisher.Photomultiplier tubes (PMTs) are widely used in physical experiments as well as in applied devices. PMTs are sensitive to magnetic field, so creation of effective magnetic shields for their protection is very important. In this paper, the results of measurements of shielding effectiveness of multilayer film magnetic shields on PMT-85 are presented. Shields were formed by alternating layers of a material with high magnetic permeability (Ni-Fe) and high electric conductivityβ€”Cu. The maximum number of bilayers reached 45. It is shown that in weak magnetic fields up to 0.5 mT, the output signal amplitude from PMT-85 does not change for all used multilayer shields. In strong magnetic field of 2–4 mT, the output signal amplitude decrease with 10%–40% depending from the number of layers in the shield. The Pulse distribution of PMT-85 in magnetic field 0.2–4 mT slightly changed in the range 1.1%–1.3% for the case when the number of layers do not exceed 10 and practically did not change for a shield with 45 double layers

    Multilayer film shields for the protection of PMT from constant magnetic field

    Get PDF
    This is the Published Version made available with the permission of the publisher.Photomultiplier tubes (PMTs) are widely used in physical experiments as well as in applied devices. PMTs are sensitive to magnetic field, so creation of effective magnetic shields for their protection is very important. In this paper, the results of measurements of shielding effectiveness of multilayer film magnetic shields on PMT-85 are presented. Shields were formed by alternating layers of a material with high magnetic permeability (Ni-Fe) and high electric conductivityβ€”Cu. The maximum number of bilayers reached 45. It is shown that in weak magnetic fields up to 0.5 mT, the output signal amplitude from PMT-85 does not change for all used multilayer shields. In strong magnetic field of 2–4 mT, the output signal amplitude decrease with 10%–40% depending from the number of layers in the shield. The Pulse distribution of PMT-85 in magnetic field 0.2–4 mT slightly changed in the range 1.1%–1.3% for the case when the number of layers do not exceed 10 and practically did not change for a shield with 45 double layers

    Efficiency of Magnetostatic Protection Using Nanostructured Permalloy Shielding Coatings Depending on Their Microstructure

    Get PDF
    The effect of microstructure on the efficiency of shielding or shunting of the magnetic fluxby permalloy shields was investigated in the present work. For this purpose, the FeNi shieldingcoatings with different grain structures were obtained using stationary and pulsed electrodeposition.The coatings’ composition, crystal structure, surface microstructure, magnetic domain structure, andshielding efficiency were studied. It has been shown that coatings with 0.2–0.6ΞΌm grains have adisordered domain structure. Consequently, a higher value of the shielding efficiency was achieved,but the working range was too limited. The reason for this is probably the hindered movement of thedomain boundaries. Samples with nanosized grains have an ordered two-domain magnetic structurewith a permissible partial transition to a superparamagnetic state in regions with a grain size of lessthan 100 nm. The ordered magnetic structure, the small size of the domain, and the coexistenceof ferromagnetic and superparamagnetic regions, although they reduce the maximum value ofthe shielding efficiency, significantly expand the working range in the nanostructured permalloyshielding coatings. As a result, a dependence between the grain and domain structure and theefficiency of magnetostatic shielding was found

    ΠžΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΡ ΠΈΠ·Π»ΡƒΡ‡Π°ΡŽΡ‰Π΅ΠΉ ΠΊΠ°Ρ‚ΡƒΡˆΠΊΠΈ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎ-Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ комплСкса для исслСдования эффСктивности экранирования низкочастотного элСктромагнитного излучСния

    Get PDF
    Optimization of the radiation coil of the hardware-software complex for studying the effectiveness of shielding of low-frequency electromagnetic radiation will make it possible to assess the effectiveness of shielding coatings at a higher level. This fact will make it possible to develop coatings with improved characteristics. The purpose of this work was to determine the optimal characteristics of the emitting coil which will ensure its stable operation and magnetic field strength in the frequency range up to 100 kHz.The parameters of the manufactured samples, such as inductance (L), active (R) and total resistance (Z), were obtained using an MNIPI E7-20 emittance meter. In practice, the coils with the optimal parameters calculated theoretically were connected to a current source and amplifier. To detect electromagnetic radiation, a multilayer inductor connected to a UTB-TREND 722-050-5 oscilloscope was used as a signal receiver.The results of measurements showed that the resistance of multilayer coils is approximately 1000 times higher than that of single-layer coils. Also, for multilayer coils, an avalanche-like increase in total resistance is observed starting from a frequency of 10 kHz, while for single-layer coils there is a uniform increase in total resistance over the entire frequency range up to 100 kHz.The paper presents results of research on the correlation of the performance of single-layer and multilayer inductors depending on their parameters in the frequency range from Β 20 Hz Β to Β 100 kHz. Values of the voltage required to provide the magnetic field strength of 1, 5, 20 Oe at 25 Hz and 100 kHz have been calculated. After analyzing the data obtained, the optimal parameters of the inductor were found which ensure stable performance in the frequency range up to 100 kHz.ΠžΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΡ ΠΈΠ·Π»ΡƒΡ‡Π°ΡŽΡ‰Π΅ΠΉ ΠΊΠ°Ρ‚ΡƒΡˆΠΊΠΈ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎ-Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ комплСкса для исслСдования эффСктивности экранирования низкочастотного элСктромагнитного излучСния ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ‚ Π½Π° Π±ΠΎΠ»Π΅Π΅ качСствСнном ΡƒΡ€ΠΎΠ²Π½Π΅ ΠΎΡ†Π΅Π½ΠΈΠ²Π°Ρ‚ΡŒ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΡΠΊΡ€Π°Π½ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… ΠΏΠΎΠΊΡ€Ρ‹Ρ‚ΠΈΠΉ. Π”Π°Π½Π½Ρ‹ΠΉ Ρ„Π°ΠΊΡ‚ даст Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ Ρ€Π°Π·Ρ€Π°Π±Π°Ρ‚Ρ‹Π²Π°Ρ‚ΡŒ покрытия с ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½Π½Ρ‹ΠΌΠΈ характСристиками. ЦСлью Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹ являлось ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… характСристик ΠΈΠ·Π»ΡƒΡ‡Π°ΡŽΡ‰Π΅ΠΉ ΠΊΠ°Ρ‚ΡƒΡˆΠΊΠΈ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ обСспСчат Π΅Ρ‘ ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΡƒΡŽ Ρ€Π°Π±ΠΎΡ‚Ρƒ ΠΈ Π½Π°ΠΏΡ€ΡΠΆΡ‘Π½Π½ΠΎΡΡ‚ΡŒ ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ поля Π² частотном Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ Π΄ΠΎ 100 ΠΊΠ“Ρ†.ΠŸΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ ΠΈΠ·Π³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½Π½Ρ‹Ρ… ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ², Ρ‚Π°ΠΊΠΈΠ΅ ΠΊΠ°ΠΊ ΠΈΠ½Π΄ΡƒΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ, Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ΅ ΠΈ ΠΎΠ±Ρ‰Π΅Π΅ сопротивлСниС, Π±Ρ‹Π»ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ ΠΈΠ·ΠΌΠ΅Ρ€ΠΈΡ‚Π΅Π»ΡŒ иммитанса МНИПИ E7-20. На ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅ ΠΊΠ°Ρ‚ΡƒΡˆΠΊΠΈ с ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ, вычислСнными тСорСтичСски, Π±Ρ‹Π»ΠΈ ΠΏΠΎΠ΄ΠΊΠ»ΡŽΡ‡Π΅Π½Ρ‹ ΠΊ источнику ΠΈ ΡƒΡΠΈΠ»ΠΈΡ‚Π΅Π»ΡŽ Ρ‚ΠΎΠΊΠ°. Для дСтСктирования элСктромагнитного излучСния Π² качСствС ΠΏΡ€ΠΈΡ‘ΠΌΠ½ΠΈΠΊΠ° сигнала использовалась многослойная ΠΊΠ°Ρ‚ΡƒΡˆΠΊΠ° индуктивности, ΠΏΠΎΠ΄ΠΊΠ»ΡŽΡ‡Ρ‘Π½Π½Π°Ρ ΠΊ осциллографу UTB-TREND 722-050-5.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ сопротивлСниС многослойных ΠΊΠ°Ρ‚ΡƒΡˆΠ΅ΠΊ ΠΏΡ€ΠΈΠ±Π»ΠΈΠ·ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π² 1000 Ρ€Π°Π· большС сопротивлСния однослойных. Π’Π°ΠΊΠΆΠ΅ Ρƒ многослойных ΠΊΠ°Ρ‚ΡƒΡˆΠ΅ΠΊ Π½Π°Π±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡ Π»Π°Π²ΠΈΠ½ΠΎΠΎΠ±Ρ€Π°Π·Π½Ρ‹ΠΉ рост ΠΎΠ±Ρ‰Π΅Π³ΠΎ сопротивлСния, начиная с частоты 10 ΠΊΠ“Ρ†, Π² Ρ‚ΠΎ врСмя ΠΊΠ°ΠΊ Ρƒ однослойных ΠΊΠ°Ρ‚ΡƒΡˆΠ΅ΠΊ происходит Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½Ρ‹ΠΉ рост ΠΎΠ±Ρ‰Π΅Π³ΠΎ сопротивлСния Π½Π° всём Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ частот Π΄ΠΎ 100 ΠΊΠ“Ρ†. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Ρ‹ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ исслСдований коррСляции Ρ€Π°Π±ΠΎΡ‡ΠΈΡ… характСристик  однослойных Β ΠΈ многослойных  ΠΊΠ°Ρ‚ΡƒΡˆΠ΅ΠΊΒ  индуктивности  Π²Β  зависимости  ΠΎΡ‚Β  ΠΈΡ…Β  ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ²Β  Π²Β  частотном  Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ ΠΎΡ‚ 20 Π“Ρ† Π΄ΠΎ 100 ΠΊΠ“Ρ†. Рассчитаны значСния напряТСния, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΠ³ΠΎ для обСспСчСния напряТённости ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ поля 1, 5, 20 Π­ ΠΏΡ€ΠΈ 25 Π“Ρ† ΠΈ 100 ΠΊΠ“Ρ†. ΠŸΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π² ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅, Π½Π°ΠΉΠ΄Π΅Π½Ρ‹ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ ΠΊΠ°Ρ‚ΡƒΡˆΠΊΠΈ индуктивности, ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½Ρ‹Π΅ Ρ€Π°Π±ΠΎΡ‡ΠΈΠ΅ характСристики Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ частот Π΄ΠΎ 100 ΠΊΠ“Ρ†

    ВлияниС Π³Π°Π±Π°Ρ€ΠΈΡ‚Π½Ρ‹Ρ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² цилиндричСского экрана Π½Π° ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ экранирования

    Get PDF
    Study of dimensional parametersΚΌ influence on shielding properties of cylindrical shields will allow to optimise the fusion process, as well as to reduce production costs by reducing the material used. The purpose of this work was to compare results of theoretical calculation of shielding effectiveness of an infinite cylindrical shield with the data obtained in real conditions.A cylindrical Ni-Fe shield was synthesised by electrochemical deposition with length of 32 cm, diameter of 4.5 cm and shielding thickness of β‰ˆ 100 Β΅m. The cylinder length was then reduced from 32 cm to 6 cm in 4 cm increments and for each cylinder length shielding effectiveness was measured using three-coordinate Helmholtz field-forming system.The measurement results show that the calculation of shielding effectiveness of infinite cylindrical shield is valid for cylinder lengths l β‰₯ 18–20 cm. Shielding effectiveness is markedly reduced at values of l Λ‚ 15 cm.Analysis of data obtained allowed to conclude that it is necessary to determine the correction factor when calculating a cylindrical screen shielding efficiencyΠ˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ влияния Π³Π°Π±Π°Ρ€ΠΈΡ‚Π½Ρ‹Ρ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² Π½Π° ΡΠΊΡ€Π°Π½ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ свойства цилиндричСских экранов ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ‚ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ процСсс синтСза, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΡΠ½ΠΈΠ·ΠΈΡ‚ΡŒ Π·Π°Ρ‚Ρ€Π°Ρ‚Ρ‹ Π½Π° производство, Π·Π° счёт ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΡ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΠΎΠ³ΠΎ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°. ЦСлью Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π±Ρ‹Π»ΠΎ сравнСниС Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² тСорСтичСского расчёта эффСктивности экранирования бСсконСчного цилиндричСского экрана ΠΈ Π΄Π°Π½Π½Ρ‹Ρ…, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Π² Ρ€Π΅Π°Π»ΡŒΠ½Ρ‹Ρ… условиях.ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ элСктрохимичСского осаТдСния Π±Ρ‹Π» синтСзирован цилиндричСский экран Ni-Fe, Π΄Π»ΠΈΠ½Π° ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ составила 32 см, Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€ 4,5 см, Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½Π° ΡΠΊΡ€Π°Π½ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ покрытия ΡΠΎΡΡ‚Π°Π²ΠΈΠ»Π°β‰ˆ 100 ΠΌΠΊΠΌ. Π—Π°Ρ‚Π΅ΠΌ Π΄Π»ΠΈΠ½Π° Ρ†ΠΈΠ»ΠΈΠ½Π΄Ρ€Π° ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π»Π°ΡΡŒ ΠΎΡ‚ 30 Π΄ΠΎ 6 см с шагом Π² 4 см, для ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Π΄Π»ΠΈΠ½Ρ‹ Ρ†ΠΈΠ»ΠΈΠ½Π΄Ρ€Π° Π±Ρ‹Π»Π° ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½Π° ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ экранирования с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΏΠΎΠ»Π΅ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰Π΅ΠΉ систСмы Ρ‚Ρ€Ρ‘Ρ…ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹Ρ… ΠΊΠ°Ρ‚ΡƒΡˆΠ΅ΠΊ Π“Π΅Π»ΡŒΠΌΠ³ΠΎΠ»ΡŒΡ†Π°.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ расчёт эффСктивности экранирования бСсконСчного цилиндричСского экрана справСдлив ΠΏΡ€ΠΈ Π΄Π»ΠΈΠ½Π΅ Ρ†ΠΈΠ»ΠΈΠ½Π΄Ρ€Π° l β‰₯ 18–20 см. ΠŸΡ€ΠΈ значСниях l Λ‚ 15 см ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ экранирования Π·Π°ΠΌΠ΅Ρ‚Π½ΠΎ сниТаСтся.Анализ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ… ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ» ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ Π²Ρ‹Π²ΠΎΠ΄ ΠΎ нСобходимости опрСдСлСния ΠΏΠΎΠΏΡ€Π°Π²ΠΎΡ‡Π½ΠΎΠ³ΠΎ коэффициСнта ΠΏΡ€ΠΈ расчётах эффСктивности экранирования цилиндричСского экрана

    Π­Ρ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ магнитостатичСского экранирования цилиндричСскими ΠΎΠ±ΠΎΠ»ΠΎΡ‡ΠΊΠ°ΠΌΠΈ

    Get PDF
    Research and calculations results have been demonstrated that the dependence of the efficiency of magnetostatic shielding for shells with different thickness have a maximum whose position shifts with increasing thickness of the shielding cover in the area of higher fields. Positions of the peaks on the curve Π­=Π­(Н) and ΞΌ=ΞΌ(Н) do not coincide with each other. It is difficult to interpret in terms of the shunting model. The results can be explained by nonlinear nature of the distribution of the magnetic permeability witnin the thickness of the shields. The analytical calculations of the average permeability of cylindrical shells with varying thickness were carrying out depending on the strength of the external static magnetic field. It is shown that the courses of the experimental Π­=Π­(Н) and calculated ΞΌ0=ΞΌ0(Н) dependencies correlate with position of maximum.Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ‹Ρ… исслСдований ΠΈ расчСтов ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ зависимости эффСктивности экранирования ΠΎΡ‚ напряТСнности ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ поля Π² экранах с Ρ€Π°Π·Π½ΠΎΠΉ Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½ΠΎΠΉ ΠΈΠΌΠ΅ΡŽΡ‚ максимумы, полоТСния ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΡΠΌΠ΅Ρ‰Π°ΡŽΡ‚ΡΡ с ростом Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½Ρ‹ ΡΠΊΡ€Π°Π½ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ покрытия Π² ΠΎΠ±Π»Π°ΡΡ‚ΡŒ Π±ΠΎΠ»ΡŒΡˆΠΈΡ… ΠΏΠΎΠ»Π΅ΠΉ. ПолоТСния максимумов Π½Π° ΠΊΡ€ΠΈΠ²Ρ‹Ρ… зависимостСй Π­ = Π­(Н) ΠΈ ΞΌ = ΞΌ(Н) Π½Π΅ ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡŽΡ‚ Π΄Ρ€ΡƒΠ³ с Π΄Ρ€ΡƒΠ³ΠΎΠΌ, Ρ‡Ρ‚ΠΎ слоТно ΠΈΠ½Ρ‚Π΅Ρ€ΠΏΡ€Π΅Ρ‚ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π² Ρ€Π°ΠΌΠΊΠ°Ρ… ΠΌΠΎΠ΄Π΅Π»ΠΈ ΡˆΡƒΠ½Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡ. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΎΠ±ΡŠΡΡΠ½Π΅Π½Ρ‹ Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹ΠΌ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΎΠΌ распрСдСлСния ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠΉ проницаСмости ΠΏΠΎ Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½Π΅ экрана. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Ρ‹ аналитичСскиС расчСты усрСднСнной ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠΉ проницаСмости ΠΊΠΎΠ½Π΅Ρ‡Π½Ρ‹Ρ… цилиндричСских ΠΎΠ±ΠΎΠ»ΠΎΡ‡Π΅ΠΊ Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠΉ Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½Ρ‹ Π² зависимости ΠΎΡ‚ напряТСнности внСшнСго статичСского ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ поля. Π₯ΠΎΠ΄ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… Π­ = Π­(Π½) ΠΈ рассчитанных ΞΌ0=ΞΌ0(Н) зависимостСй, ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ полоТСния максимумов ΠΊΠΎΡ€Ρ€Π΅Π»ΠΈΡ€ΡƒΡŽΡ‚ ΠΌΠ΅ΠΆΠ΄Ρƒ собой

    ΠžΠ‘ΠžΠ‘Π•ΠΠΠžΠ‘Π’Π˜ Π‘Π˜ΠΠ’Π•Π—Π ΠœΠΠžΠ“ΠžΠ‘Π›ΠžΠ™ΠΠ«Π₯ БВРУКВУР НА ΠžΠ‘ΠΠžΠ’Π• Π­Π›Π•ΠšΠ’Π ΠžΠ›Π˜Π’Π˜Π§Π•Π‘ΠšΠ˜ ΠžΠ‘ΠΠ–Π”Π•ΠΠΠ«Π₯ ΠŸΠ›Π•ΠΠžΠš ΠΠ˜ΠšΠ•Π›Π¬-Π–Π•Π›Π•Π—Πž И Π­Π€Π€Π•ΠšΠ’Π˜Π’ΠΠžΠ‘Π’Π¬ ИΠ₯ Π ΠΠ”Π˜ΠΠ¦Π˜ΠžΠΠΠžΠ™ Π—ΠΠ©Π˜Π’Π«

    Get PDF
    Modern semiconductor devices and microchips are sensitive to the effects of ionizing radiation. Nevertheless, they are widely used in military and space technology, in the nuclear industry. At the same time, a number of technological, circuit and software solutions are used to reduce the effects of radiation exposure. The most preferable method is one based on using shields, due to its low cost and excellent radiation properties of shield’s materials. Recently, special attention has been paid to the study of multilayer structures. Experimental samples of Ni-Fe alloys and multilayer Ni-Fe/Cu structures with different chemical composition were obtained by electrochemical deposition. The dependence of chemical composition variation from deposition conditions was determined. Ni-Fe alloys crystal structure was studied using X-ray diffraction. Shielding properties of Ni-Fe/Cu multilayer structures were investigating on linear accelerator ELA-4 under 4 MeV electron irradiation. Silicon p-MOSFETs were used as test structures. Evaluation of electron flow weakening effectiveness was performed by current-voltage characteristics changing – threshold voltage of pMOS-transistors, which were located behind shields based on NiFe/Cu multilayered structures and without shields. It was found that increasing number of Ni-Fe layers within the same total thickness leads to maximum shielding efficiency.Π‘ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Π΅ ΠΏΠΎΠ»ΡƒΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ²Ρ‹Π΅ ΠΏΡ€ΠΈΠ±ΠΎΡ€Ρ‹ ΠΈ микросхСмы Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ ΠΊ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡŽ ΠΈΠΎΠ½ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… ΠΈΠ·Π»ΡƒΡ‡Π΅Π½ΠΈΠΉ. Π’Π΅ΠΌ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ ΠΎΠ½ΠΈ ΡˆΠΈΡ€ΠΎΠΊΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡŽΡ‚ΡΡ Π² Π²ΠΎΠ΅Π½Π½ΠΎΠΉ ΠΈ космичСской Ρ‚Π΅Ρ…Π½ΠΈΠΊΠ΅, Π² ядСрной индустрии. ΠŸΡ€ΠΈ этом ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ ряд тСхнологичСских, схСмотСхничСских ΠΈ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½Ρ‹Ρ… Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ, ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°ΡŽΡ‰ΠΈΡ… послСдствия Ρ€Π°Π΄ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ воздСйствия. НаиболСС ΠΏΡ€Π΅Π΄ΠΏΠΎΡ‡Ρ‚ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ΠΌ являСтся Π²Ρ‹Π±ΠΎΡ€ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Π½Π° основС использования экранов, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΠΎΠ½ экономичнСС ΠΈ опрСдСляСтся Ρ€Π°Π΄ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹ΠΌΠΈ свойствами ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Ρ… для изготовлСния экранов ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ². Π’ послСднСС врСмя особоС Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ удСляСтся исслСдованию многослойных структур, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ΠΏΡ€ΠΈ ΠΏΡ€ΠΎΡ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠΈ ΠΈΠ·Π»ΡƒΡ‡Π΅Π½ΠΈΠΉ Ρ‡Π΅Ρ€Π΅Π· эти ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ ослаблСниС эффСктов Ρ€Π°Π΄ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ воздСйствия, Ρ‡Ρ‚ΠΎ ΠΈΠΌΠ΅Π΅Ρ‚ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π½Π°ΡƒΡ‡Π½Ρ‹ΠΉ ΠΈ ΠΏΡ€ΠΈΠΊΠ»Π°Π΄Π½ΠΎΠΉ интСрСс. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ элСктролитичСского осаТдСния ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΎΠ±Ρ€Π°Π·Ρ†Ρ‹ ΠΏΠΎΠΊΡ€Ρ‹Ρ‚ΠΈΠΉ сплавов NiFe ΠΈ многослойных структур NiFe/Cu с Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌ химичСским составом. УстановлСны зависимости измСнСния химичСского состава ΠΎΡ‚ условий осаТдСния. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ рСнтгСновской Π΄ΠΈΡ„Ρ€Π°ΠΊΡ†ΠΈΠΈ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Ρ‹ исслСдования кристалличСской структуры. ΠŸΠΎΠΊΡ€Ρ‹Ρ‚ΠΈΡ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‚ΡΡ Π³Ρ€Π°Π½Π΅Ρ†Π΅Π½Ρ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ кубичСской Ρ€Π΅ΡˆΠ΅Ρ‚ΠΊΠΎΠΉ, с ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ΠΌ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ ΠΆΠ΅Π»Π΅Π·Π° ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ элСмСнтарной ячСйки увСличиваСтся. Π­Ρ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Ρ€Π°Π΄ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ Π·Π°Ρ‰ΠΈΡ‚Ρ‹ многослойных структур NiFe/Cu ΠΎΡ†Π΅Π½ΠΈΠ²Π°Π»Π°ΡΡŒ ΠΏΡ€ΠΈ ΠΎΠ±Π»ΡƒΡ‡Π΅Π½ΠΈΠΈ элСктронами с энСргиСй 4 ΠœΡΠ’ Π½Π° Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌ ускоритСлС Π­Π›Π£-4. Π’ качСствС тСстовых структур использовались ΠΊΡ€Π΅ΠΌΠ½ΠΈΠ΅Π²Ρ‹Π΅ МОП-транзисторы. Π­Ρ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ослаблСния элСктронного ΠΏΠΎΡ‚ΠΎΠΊΠ° Π±Ρ‹Π»Π° ΠΎΡ†Π΅Π½Π΅Π½Π° ΠΏΠΎ измСнСнию Π²ΠΎΠ»ΡŒΡ‚Π°ΠΌΠΏΠ΅Ρ€Π½Ρ‹Ρ… характСристик: ΠΏΠΎΡ€ΠΎΠ³ΠΎΠ²ΠΎΠ³ΠΎ напряТСния для МОП транзисторов, располоТСнных Π·Π° экранами Π½Π° основС многослойных структур NiFe/Cu, ΠΈ Π±Π΅Π· экранов. УстановлСно, Ρ‡Ρ‚ΠΎ с ростом количСства слоСв ΠΏΡ€ΠΈ сохранСнии суммарной Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½Ρ‹ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ экранирования увСличиваСтся, Ρ‡Ρ‚ΠΎ позволяСт ΡΠΎΠ·Π΄Π°Π²Π°Ρ‚ΡŒ высокоэффСктивныС экраны ΠΏΡ€ΠΈ сопоставимых массогабаритных ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°Ρ….
    • …
    corecore