153 research outputs found

    The role of antibiotics in the treatment of chronic prostatitis: A consensus statement

    Get PDF
    Practical guidelines for the diagnosis and treatment of chronic prostatitis are presented. Chronic prostatitis is classified as chronic bacterial prostatitis (culture-positive) and chronic inflammatory prostatitis (culture-negative). If chronic bacterial prostatitis is suspected, based on relevant symptoms or recurrent UTIs, underlying urological conditions should be excluded by the following tests: rectal examination, midstream urine culture and residual urine. The diagnosis should be confirmed by the Meares and Stamey technique. Antibiotic therapy is recommended for acute exacerbations of chronic prostatitis, chronic bacterial prostatitis and chronic inflammatory prostatitis, if there is clinical, bacteriological or supporting immunological evidence of prostate infection. Unless a patient presents with fever, antibiotic treatment should not be initiated immediately except in cases of acute prostatitis or acute episodes in a patient with chronic bacterial prostatitis. The work-up, with the appropriate investigations should be done first, within a reasonable time period which, preferably, should not be longer than 1 week. During this period, nonspecific treatment, such as appropriate analgesia to relieve symptoms, should be given. The minimum duration of antibiotic treatment should be 2-4 weeks. If there is no improvement in symptoms, treatment should be stopped and reconsidered. However, if there is improvement, it should be continued for at least a further 2-4 weeks to achieve clinical cure and, hopefully, eradication of the causative pathogen. Antibiotic treatment should not be given for 6-8 weeks without an appraisal of its effectiveness. Currently used antibiotics are reviewed. Of these, the fluoroquinolones ofloxacin and ciprofloxacin are recommended because of their favourable antibacterial spectrum and pharmacokinetic profile. A number of clinical trials are recommended and a standard study design is proposed to help resolve some outstanding issues

    Bodenzustandserhebungen: Wie beeinflussen Standort und Nutzung den Kohlenstoffvorrat in Wald- und Agrarböden?

    Get PDF
    Die Thünen-Institute für für Waldökosysteme und für Agrarklimaschutz koordinieren die bundesweiten Bodenzustandserhebungen (BZE) in Wald- und Agrarböden. Die BZE haben unterschiedliche Ausgangsbedingungen, jedoch das gemeinsame Ziel, aktuellen Zustand und Änderungen der Bodenkohlenstoffvorräte an rund 5000 Probenahmepunkten zu erfassen. Ergebnisse zum Einfluss von Klima, Nutzung und Bodenmanagement dienen zum einen der Entwicklung zu einer nachhaltigen Bodennutzung und zum anderen der Verbesserung der Emissionsberichterstattung nach UN-Klimarahmenkonvention und EU-Regelungen.Nach aktuellem Stand der qualitätsgesicherten Datenbanken beider BZE sollen Bodenkohlenstoffvorräte verschiedener Bodennutzungsarten (Nadelwald, Laubwald, Mischwald, Acker, Dauergrünland, Grünland-Wechselwirtschaft) für mineralische und organische Ober- sowie Unterböden ausgewertet und die Ergebnisse entsprechend präsentiert werden. Ferner soll eine mögliche Stratifizierung der Ergebnisse nach Bodentypen und Bodenklimaräumen geprüft werden. Ziel hierbei ist es, räumliche Datencluster zu bilden, die stabile Ergebnisse zu Zwecken der Berichterstattung und Entscheidungsfindung liefern und gleichzeitig repräsentativ bleiben

    Casimir force in O(n) lattice models with a diffuse interface

    Full text link
    On the example of the spherical model we study, as a function of the temperature TT, the behavior of the Casimir force in O(n) systems with a diffuse interface and slab geometry ∞d−1×L\infty^{d-1}\times L, where 2<d<42<d<4 is the dimensionality of the system. We consider a system with nearest-neighbor anisotropic interaction constants J∥J_\parallel parallel to the film and J⊥J_\perp across it. The model represents the n→∞n\to\infty limit of O(n) models with antiperiodic boundary conditions applied across the finite dimension LL of the film. We observe that the Casimir amplitude ΔCasimir(d∣J⊥,J∥)\Delta_{\rm Casimir}(d|J_\perp,J_\parallel) of the anisotropic dd-dimensional system is related to that one of the isotropic system ΔCasimir(d)\Delta_{\rm Casimir}(d) via ΔCasimir(d∣J⊥,J∥)=(J⊥/J∥)(d−1)/2ΔCasimir(d)\Delta_{\rm Casimir}(d|J_\perp,J_\parallel)=(J_\perp/J_\parallel)^{(d-1)/2} \Delta_{\rm Casimir}(d). For d=3d=3 we find the exact Casimir amplitude ΔCasimir=[Cl2(π/3)/3−ζ(3)/(6π)](J⊥/J∥) \Delta_{\rm Casimir}= [ {\rm Cl}_2 (\pi/3)/3-\zeta (3)/(6 \pi)](J_\perp/J_\parallel), as well as the exact scaling functions of the Casimir force and of the helicity modulus Υ(T,L)\Upsilon(T,L). We obtain that βcΥ(Tc,L)=(2/π2)[Cl2(π/3)/3+7ζ(3)/(30π)](J⊥/J∥)L−1\beta_c\Upsilon(T_c,L)=(2/\pi^{2}) [{\rm Cl}_2(\pi/3)/3+7\zeta(3)/(30\pi)] (J_\perp/J_\parallel)L^{-1}, where TcT_c is the critical temperature of the bulk system. We find that the effect of the helicity is thus strong that the Casimir force is repulsive in the whole temperature region.Comment: 15 pages, 3 figure

    Finite-size effects in the spherical model of finite thickness

    Full text link
    A detailed analysis of the finite-size effects on the bulk critical behaviour of the dd-dimensional mean spherical model confined to a film geometry with finite thickness LL is reported. Along the finite direction different kinds of boundary conditions are applied: periodic (p)(p), antiperiodic (a)(a) and free surfaces with Dirichlet (D)(D), Neumann (N)(N) and a combination of Neumann and Dirichlet (ND)(ND) on both surfaces. A systematic method for the evaluation of the finite-size corrections to the free energy for the different types of boundary conditions is proposed. The free energy density and the equation for the spherical field are computed for arbitrary dd. It is found, for 2<d<42<d<4, that the singular part of the free energy has the required finite-size scaling form at the bulk critical temperature only for (p)(p) and (a)(a). For the remaining boundary conditions the standard finite-size scaling hypothesis is not valid. At d=3d=3, the critical amplitude of the singular part of the free energy (related to the so called Casimir amplitude) is estimated. We obtain Δ(p)=−2ζ(3)/(5π)=−0.153051...\Delta^{(p)}=-2\zeta(3)/(5\pi)=-0.153051..., Δ(a)=0.274543...\Delta^{(a)}=0.274543... and Δ(ND)=0.01922...\Delta^{(ND)}=0.01922..., implying a fluctuation--induced attraction between the surfaces for (p)(p) and repulsion in the other two cases. For (D)(D) and (N)(N) we find a logarithmic dependence on LL.Comment: Version published in J. Phys. A: Math. Theo

    Identification of simple sequence repeat markers for sweetpotato weevil resistance

    Get PDF
    The development of sweetpotato [Ipomoea batatas (L.) Lam] germplasm with resistance to sweetpotato weevil (SPW) requires an understanding of the biochemical and genetic mechanisms of resistance to optimize crop resistance. The African sweetpotato landrace, ‘New Kawogo’, was reported to be moderately resistant to two species of SPW, Cylas puncticollis and Cylas brunneus. Resistance has been associated with the presence of hydroxycinnamic acids esters (HCAs), but the underlying genetic basis remains unknown. To determine the genetic basis of this resistance, a bi-parental sweetpotato population from a cross between the moderately resistant, white-fleshed ‘New Kawogo’ and the highly susceptible, orange-fleshed North American variety ‘Beauregard’ was evaluated for SPW resistance and genotyped with simple sequence repeat (SSR) markers to identify weevil resistance loci. SPW resistance was measured on the basis of field storage root SPW damage severity and total HCA ester concentrations. Moderate broad sense heritability (H2 = 0.49) was observed for weevil resistance in the population. Mean genotype SPW severity scores ranged from 1.0 to 9.0 and 25 progeny exhibited transgressive segregation for SPW resistance. Mean genotype total HCA ester concentrations were significantly different (P < 0.0001). A weak but significant correlation (r = 0.103, P = 0.015) was observed between total HCA ester concentration and SPW severity. A total of five and seven SSR markers were associated with field SPW severity and total HCA ester concentration, respectively. Markers IBS11, IbE5 and IbJ544b showed significant association with both field and HCA-based resistance, representing potential markers for the development of SPW resistant sweetpotato cultivars

    Universal scaling behavior of non-equilibrium phase transitions

    Full text link
    One of the most impressive features of continuous phase transitions is the concept of universality, that allows to group the great variety of different critical phenomena into a small number of universality classes. All systems belonging to a given universality class have the same critical exponents, and certain scaling functions become identical near the critical point. It is the aim of this work to demonstrate the usefulness of universal scaling functions for the analysis of non-equilibrium phase transitions. In order to limit the coverage of this article, we focus on a particular class of non-equilibrium critical phenomena, the so-called absorbing phase transitions. These phase transitions arise from a competition of opposing processes, usually creation and annihilation processes. The transition point separates an active phase and an absorbing phase in which the dynamics is frozen. A systematic analysis of universal scaling functions of absorbing phase transitions is presented, including static, dynamical, and finite-size scaling measurements. As a result a picture gallery of universal scaling functions is presented which allows to identify and to distinguish universality classes.Comment: review article, 160 pages, 60 figures include

    No depth-dependence of fine root litter decomposition in temperate beech forest soils

    Full text link
    Aims Subsoil organic carbon (OC) tends to be older and is presumed to be more stable than topsoil OC, but the reasons for this are not yet resolved. One hypothesis is that decomposition rates decrease with increasing soil depth. We tested whether decomposition rates of beech fine root litter varied with depth for a range of soils using a litterbag experiment in German beech forest plots. Methods In three study regions (Schorfheide-Chorin, Hainich-Dün and Schwäbische-Alb), we buried 432 litterbags containing 0.5 g of standardized beech root material (fine roots with a similar chemical composition collected from 2 year old Fagus sylvatica L. saplings, root diameter<2mm) at three different soil depths (5, 20 and 35 cm). The decomposition rates as well as the changes in the carbon (C) and nitrogen (N) concentrations of the decomposing fine root litter were determined at a 6 months interval during a 2 years field experiment. Results The amount of root litter remaining after 2 years of field incubation differed between the study regions (76 ± 2 % in Schorfheide-Chorin, 85 ± 2 % in Schwäbische-Alb, and 88±2 % in Hainich-Dün) but did not vary with soil depth. Conclusions Our results indicate that the initial fine root decomposition rates are more influenced by regional scale differences in environmental conditions including climate and soil parent material, than by changes in microbial activities with soil depth. Moreover, they suggest that a similar potential to decompose new resources in the form of root litter exists in both surface and deep soils

    Homeotic transformations reflect departure from the mammalian 'rule of seven' cervical vertebrae in sloths: inferences on the Hox code and morphological modularity of the mammalian neck

    Get PDF
    Background: Sloths are one of only two exceptions to the mammalian 'rule of seven' vertebrae in the neck. As a striking case of breaking the evolutionary constraint, the explanation for the exceptional number of cervical vertebrae in sloths is still under debate. Two diverging hypotheses, both ultimately linked to the low metabolic rate of sloths, have been proposed: hypothesis 1 involves morphological transformation of vertebrae due to changes in the Hox gene expression pattern and hypothesis 2 assumes that the Hox gene expression pattern is not altered and the identity of the vertebrae is not changed. Direct evidence supporting either hypothesis would involve knowledge of the vertebral Hox code in sloths, but the realization of such studies is extremely limited. Here, on the basis of the previously established correlation between anterior Hox gene expression and the quantifiable vertebral shape, we present the morphological regionalization of the neck in three different species of sloths with aberrant cervical count providing indirect insight into the vertebral Hox code. Results: Shape differences within the cervical vertebral column suggest a mouse-like Hox code in the neck of sloths. We infer an anterior shift of HoxC-6 expression in association with the first thoracic vertebra in short-necked sloths with decreased cervical count, and a posterior shift of HoxC-5 and HoxC-6 expression in long-necked sloths with increased cervical count. Conclusion: Although only future developmental analyses in non-model organisms, such as sloths, will yield direct evidence for the evolutionary mechanism responsible for the aberrant number of cervical vertebrae, our observations lend support to hypothesis 1 indicating that the number of modules is retained but their boundaries are displaced. Our approach based on quantified morphological differences also provides a reliable basis for further research including fossil taxa such as extinct 'ground sloths' in order to trace the pattern and the underlying genetic mechanisms in the evolution of the vertebral column in mammals
    • …
    corecore