100 research outputs found
Effect of dynamic compressive loading and its combination with a growth factor on the chondrocytic phenotype of 3-dimensional scaffold-embedded chondrocytes
Background and purpose Three-dimensionally (3D-) embedded chondrocytes have been suggested to maintain the chondrocytic phenotype. Furthermore, mechanical stress and growth factors have been found to be capable of enhancing cell proliferation and ECM synthesis. We investigated the effect of mechanical loading and growth factors on reactivation of the 3D-embedded chondrocytes
Dual signaling of Wamide myoinhibitory peptides through a peptide-gated channel and a GPCR in Platynereis
This is the final version of the article. Available from FASEB via the DOI in this record.Neuropeptides commonly signal by metabotropic GPCRs. In some mollusks and cnidarians, RFamide neuropeptides mediate fast ionotropic signaling by peptide-gated ion channels that belong to the DEG/ENaC family. Here we describe a neuropeptide system with a dual mode of signaling by both a peptide-gated ion channel and a GPCR. We identified and characterized a peptide-gated channel in the marine annelid Platynereis dumerilii that is specifically activated by Wamide myoinhibitory peptides derived from the same proneuropeptide. The myoinhibitory peptide-gated ion channel (MGIC) belongs to the DEG/ENaC family and is paralogous to RFamide-gated ion channels. Platynereis myoinhibitory peptides also activate a previously described GPCR, MAG. We measured the potency of all Wamides on both MGIC and MAG and identified peptides that preferentially activate one or the other receptor. Analysis of a single-cell transcriptome resource indicates that MGIC and MAG signal in distinct target neurons. The identification of a Wamide-gated ion channel suggests that peptide-gated channels are more diverse and widespread in animals than previously appreciated. The possibility of neuropeptide signaling by both ionotropic and metabotropic receptors to different target cells in the same organism highlights an additional level of complexity in peptidergic signaling networks.-Schmidt, A., Bauknecht, P., Williams, E. A., Augustinowski, K., Gründer, S., Jékely, G. Dual signaling of Wamide myoinhibitory peptides through a peptide-gated channel and a GPCR in Platynereis.P.B. was
supported by the International Max Planck Research School
(IMPRS) “From Molecules to Organisms.” E.A.W. was
supported by a grant from Deutsche Forschungsgemeinschaft
(JE 777/1-1)
Microarray and proteomic analysis of the human alcoholic brain
The superior frontal cortex (SFC) is selectively damaged in chronic alcohol abuse, with localized neuronal loss and tissue atrophy. Regions such as motor cortex show little neuronal loss except in severe co-morbidity (liver cirrhosis or WKS). Altered gene expression was found in microarray comparisons of alcoholic and control SFC samples [1]. We used Western blots and proteomic analysis to identify the proteins that also show differential expression. Tissue was obtained at autopsy under informed, written consent from uncomplicated alcoholics and age- and sex-matched controls. Alcoholics had consumed 80 g ethanol/day chronically (often, 200 g/day for 20 y). Controls either abstained or were social drinkers ( 20 g/day). All subjects had pathological confirmation of liver and brain diagnosis; none had been polydrug abusers. Samples were homogenized in water and clarified by brief centrifugation (1000g, 3 min) before storage at –80°C. For proteomics the thawed suspensions were centrifuged (15000g, 50 min) to prepare soluble fractions. Aliquots were pooled from SFC samples from the 5 chronic alcoholics and 5 matched controls used in the previous microarray study [1]. 2-Dimensional electrophoresis was performed in triplicate using 18 cm format pH 4–7 and pH 6–11 immobilized pH gradients for firstdimension isoelectric focusing. Following second-dimension SDS-PAGE the proteins were fluorescently stained and the images collected by densitometry. 182 proteins differed by 2-fold between cases and controls. 141 showed lower expression in alcoholics, 33 higher, and 8 were new or had disappeared. To date 63 proteins have been identified using MALDI-MS and MS-MS. Western blots were performed on uncentrifuged individual samples from 76 subjects (controls, uncomplicated alcoholics and cirrhotic alcoholics). A common standard was run on every gel. After transfer, immunolabeling, and densitometry, the intensities of the unknown bands were compared to those of the standards. We focused on proteins from transcripts that showed clear differences in a series of microarray studies, classified into common sets including Regulators of G-protein Signaling and Myelin-associated proteins. The preponderantly lower level of differentially expressed proteins in alcoholics parallels the microarray mRNA analysis in the same samples. We found that mRNA and protein expression do not frequently correspond; this may help identify pathogenic processes acting at the level of transcription, translation, or post-translationally
Implementierungen der Netzhaut/Glaskörper-Chirurgie in Entwicklungsländern - erste Erfahrungen
Introduction: Negative mood states after alcohol detoxification may enhance the relapse risk. As recently shown in healthy volunteers, dopamine storage capacity (V d) in the left amygdala was positively correlated with functional activation in the left amygdala and anterior cingulate cortex (ACC) during an emotional task; high functional connectivity between the amygdala and the ACC, a region important for emotion regulation, was associated with low trait anxiety. Based on these findings, we now tested whether detoxified alcohol-dependent patients have a disrupted modulation of the anterior cingulate cortex activation in response to aversive stimuli by amygdala dopamine. Furthermore, we asked whether disrupted functional coupling between amygdala and ACC during aversive processing is related to trait anxiety. Methods: We used combined 6-[18F]-fluoro-l-DOPA positron emission tomography (PET), functional magnetic resonance imaging (fMRI) and Spielberger's state-trait anxiety questionnaire (STAI) in 11 male detoxified alcohol-dependent patients compared to 13 matched healthy controls. Results: Unlike healthy controls, patients showed no significant correlation between our PET metric for dopamine storage capacity (FDOPA V d), in left amygdala and activation in left ACC. Moreover, the functional connectivity between amygdala and ACC during processing of aversive emotional stimuli was reduced in patients. Voxel-based morphometry did not reveal any discernible group differences in amygdala volume. Discussion: These results suggest that dopamine-modulated corticolimbic circuit function is important for responding to emotional information such that apparent functional deficits in this neuromodulatory circuitry may contribute to trait anxiety in alcohol-dependent patients
- …