199 research outputs found

    Corticosterone Potentiation of Cocaine-Induced Reinstatement of Conditioned Place Preference in Mice is Mediated by Blockade of the Organic Cation Transporter 3

    Get PDF
    The mechanisms by which stressful life events increase the risk of relapse in recovering cocaine addicts are not well understood. We previously reported that stress, via elevated corticosterone, potentiates cocaine-primed reinstatement of cocaine seeking following self-administration in rats and that this potentiation appears to involve corticosterone-induced blockade of dopamine clearance via the organic cation transporter 3 (OCT3). In the present study, we use a conditioned place preference/reinstatement paradigm in mice to directly test the hypothesis that corticosterone potentiates cocaine-primed reinstatement by blockade of OCT3. Consistent with our findings following self-administration in rats, pretreatment of male C57/BL6 mice with corticosterone (using a dose that reproduced stress-level plasma concentrations) potentiated cocaine-primed reinstatement of extinguished cocaine-induced conditioned place preference. Corticosterone failed to re-establish extinguished preference alone but produced a leftward shift in the dose–response curve for cocaine-primed reinstatement. A similar potentiating effect was observed upon pretreatment of mice with the non-glucocorticoid OCT3 blocker, normetanephrine. To determine the role of OCT3 blockade in these effects, we examined the abilities of corticosterone and normetanephrine to potentiate cocaine-primed reinstatement in OCT3-deficient and wild-type mice. Conditioned place preference, extinction and reinstatement of extinguished preference in response to low-dose cocaine administration did not differ between genotypes. However, corticosterone and normetanephrine failed to potentiate cocaine-primed reinstatement in OCT3-deficient mice. Together, these data provide the first direct evidence that the interaction of corticosterone with OCT3 mediates corticosterone effects on drug-seeking behavior and establish OCT3 function as an important determinant of susceptibility to cocaine use

    Initiation of simple and complex spikes in cerebellar Purkinje cells

    Get PDF
    Cerebellar Purkinje cells produce two distinct forms of action potential output: simple and complex spikes. Simple spikes occur spontaneously or are driven by parallel fibre input, while complex spikes are activated by climbing fibre input. Previous studies indicate that both simple and complex spikes originate in the axon of Purkinje cells, but the precise location where they are initiated is unclear. Here we address where in the axon of cerebellar Purkinje cells simple and complex spikes are generated. Using extracellular recording and voltage-sensitive dye imaging in rat and mouse Purkinje cells, we show that both simple and complex spikes are generated in the proximal axon, ∼15–20 μm from the soma. Once initiated, simple and complex spikes propagate both down the axon and back into the soma. The speed of backpropagation into the soma was significantly faster for complex compared to simple spikes, presumably due to charging of the somatodendritic membrane capacitance during the climbing fibre synaptic conductance. In conclusion, we show using two independent methods that the final integration site of simple and complex spikes is in the proximal axon of cerebellar Purkinje cells, at a location corresponding to the distal end of the axon initial segment

    Ergothioneine Biosynthesis and Functionality in the Opportunistic Fungal Pathogen, Aspergillus fumigatus.

    Get PDF
    Ergothioneine (EGT; 2-mercaptohistidine trimethylbetaine) is a trimethylated and sulphurised histidine derivative which exhibits antioxidant properties. Here we report that deletion of Aspergillus fumigatus egtA (AFUA_2G15650), which encodes a trimodular enzyme, abrogated EGT biosynthesis in this opportunistic pathogen. EGT biosynthetic deficiency in A. fumigatus significantly reduced resistance to elevated H2O2 and menadione, respectively, impaired gliotoxin production and resulted in attenuated conidiation. Quantitative proteomic analysis revealed substantial proteomic remodelling in ΔegtA compared to wild-type under both basal and ROS conditions, whereby the abundance of 290 proteins was altered. Specifically, the reciprocal differential abundance of cystathionine γ-synthase and β-lyase, respectively, influenced cystathionine availability to effect EGT biosynthesis. A combined deficiency in EGT biosynthesis and the oxidative stress response regulator Yap1, which led to extreme oxidative stress susceptibility, decreased resistance to heavy metals and production of the extracellular siderophore triacetylfusarinine C and increased accumulation of the intracellular siderophore ferricrocin. EGT dissipated H2O2 in vitro, and elevated intracellular GSH levels accompanied abrogation of EGT biosynthesis. EGT deficiency only decreased resistance to high H2O2 levels which suggests functionality as an auxiliary antioxidant, required for growth at elevated oxidative stress conditions. Combined, these data reveal new interactions between cellular redox homeostasis, secondary metabolism and metal ion homeostasis

    Need for recovery from work in relation to age: a prospective cohort study

    Get PDF
    To investigate the impact of increasing age on the need for recovery (NFR) over time among day workers The study is based on data from the first 2 years of follow-up of the Maastricht Cohort Study (n = 7,734). To investigate whether age predicted the onset of elevated NFR, multivariate survival analyses were conducted The highest levels of NFR were observed in the age group of 46-55 years. The relative risk for developing elevated NFR was highest in the age groups 36-45 years (RR 1.30; 1.07-1.58) and 46-55 years (RR 1.25; 1.03-1.52) in men and 46-55 years (RR 1.36; 1.04-1.77) in women when compared to the reference group While NFR increased with age until the age of 55, this was followed by decreased levels of NFR among older employees. Explanations for the decreasing levels of NFR in the highest age group can be found in several domains such as the work environment, private situation and compensation strategies

    R-Allyl Nickel(II) Complexes with Chelating N-Heterocyclic Carbenes: Synthesis, Structural Characterization, and Catalytic Activity

    Get PDF
    The N-heterocyclic carbene (NHC) nickel complexes [(L)Ni(NHC)][BArF4] (ArF = 3,5-bis(trifluoromethyl)- phenyl; L = allyl (1), methylallyl (2); NHC = 1-(2-picolyl)-3-methylimidazol-2-ylidene (a), 1-(2-picolyl)-3-isopropylimidazol-2-ylidene (b), 1-(2-picolyl)-3-n-butylimidazol-2-ylidene (c), 1-(2-picolyl)-3-phenylimidazol-2-ylidene (d), 1-(2-picolyl)-3- methylbenzoimidazol-2-ylidene (e), 1-(2-picolyl)-4,5-dichloro-3-methylimidazol-2-ylidene (f)) have been obtained in high yields and characterized by NMR spectroscopy. Furthermore, 1d was unambiguously characterized by single-crystal X-ray crystallography. Complexes 1a−f/2a−f have shown catalytic activity toward dimerization and hydrosilylation of styrenes. In particular, 1a proved to be the most efficient catalyst in the dimerization of styrene derivatives in the absence of cocatalyst. Also, complexes 1a,d showed high selectivity and moderate to good yields in hydrosilylation reactions

    Diminution of Voltage Threshold Plays a Key Role in Determining Recruitment of Oculomotor Nucleus Motoneurons during Postnatal Development

    Get PDF
    The size principle dictates the orderly recruitment of motoneurons (Mns). This principle assumes that Mns of different sizes have a similar voltage threshold, cell size being the crucial property in determining neuronal recruitment. Thus, smaller neurons have higher membrane resistance and require a lower depolarizing current to reach spike threshold. However, the cell size contribution to recruitment in Mns during postnatal development remains unknown. To investigate this subject, rat oculomotor nucleus Mns were intracellularly labeled and their electrophysiological properties recorded in a brain slice preparation. Mns were divided into 2 age groups: neonatal (1–7 postnatal days, n = 14) and adult (20–30 postnatal days, n = 10). The increase in size of Mns led to a decrease in input resistance with a strong linear relationship in both age groups. A well-fitted inverse correlation was also found between input resistance and rheobase in both age groups. However, input resistance versus rheobase did not correlate when data from neonatal and adult Mns were combined in a single group. This lack of correlation is due to the fact that decrease in input resistance of developing Mns did not lead to an increase in rheobase. Indeed, a diminution in rheobase was found, and it was accompanied by an unexpected decrease in voltage threshold. Additionally, the decrease in rheobase co-varied with decrease in voltage threshold in developing Mns. These data support that the size principle governs the recruitment order in neonatal Mns and is maintained in adult Mns of the oculomotor nucleus; but during postnatal development the crucial property in determining recruitment order in these Mns was not the modifications of cell size-input resistance but of voltage threshold

    How do types of employment relate to health indicators? Findings from the Second European Survey on Working Conditions

    Full text link
    http://deepblue.lib.umich.edu/bitstream/2027.42/56182/1/Benavides FG, How do types of employment relate to health indicators - Findings from the Second European Survey on Working Conditions, 2000.pd
    corecore