13 research outputs found

    Funktion glykolytischer Enzyme von Mycoplasma pneumoniae in der Wirt-Erreger-Interaktion

    Get PDF
    Mycoplasma pneumoniae ist ein parasitär lebendes Bakterium, das eine atypische Pneumonie beim Menschen verursacht. Aufgrund seiner geringen Genomgröße besitzt dieser Organismus einen eingeschränkten Metabolismus sowie eine limitierte Zahl an Pathogenitätsfaktoren. Dennoch ist dieser Mikroorganismus perfekt an seinen Wirt angepasst und es war zu vermuten, dass neben dem komplexen Adhäsionsapparat von M. pneumoniae auch glykolytische Enzyme eine Rolle bei der Interaktion mit humanen Zellen spielen. Diese Enzyme sind maßgeblich bei intrazellulär ablaufenden Stoffwechselprozessen beteiligt. Es wurde jedoch bereits bei anderen Bakterien gezeigt, dass glykolytische Enzyme ebenfalls auf der Bakterienoberfläche zu finden sind und dort mit Komponenten der extrazellulären Matrix des Wirtes interagieren können. Dieser Vorgang trägt offensichtlich zur erfolgreichen Kolonisation des Wirtes bei. Ziel dieser Arbeit war es, alle glykolytischen Enzyme von M. pneumoniae hinsichtlich ihrer Lokalisierung zu beschreiben und Teilaspekte ihrer Funktion in der Interaktion mit Wirtskomponenten zu analysieren. Die glykolytischen Enzyme wurden rekombinant produziert und für die Herstellung von monospezifischen polyklonalen Antikörpern verwendet. Die Lokalisation der Enzyme wurde durch Nachweis in der Membran- und Zytosolfraktion des M. pneumoniae Gesamtantigens untersucht. Mittels Immunfluoreszenz, Colony Blot und Protease-Verdau intakter Bakterienzellen wurde bestätigt, dass acht (Glycerinaldehyd-3-phosphat-Dehydrogenase, Lactatdehydrogenase, Transketolase, Pyruvatdehydrogenase, Phosphoglyceratmutase und Pyruvatdehydrogenase Untereinheiten A-C) der 19 glykolytischen Enzyme mit der Bakterienoberfläche assoziiert vorkommen. Die Untersuchung von Mutanten ergab, dass die Lokalisation der Enzyme nicht an das Vorkommen der für die Anheftung der Bakterien an Zielstrukturen wesentlichen Adhäsine wie die Proteine P1, P40 und P90 sowie das Oberflächenprotein P01, gekoppelt ist. Jedoch sind sowohl intakte Zellen von M. pneumoniae als auch die oberflächenlokalisierten glykolytischen Enzyme in der Lage, an verschiedene humane Zellen zu binden. Eine Analyse der nachweisbaren Proteine auf der Oberfläche der Zellen führte zur Auswahl von sechs humanen Proteinen für weiterführende Studien: Plasminogen, Vitronektin, Fibronektin, Fibrinogen, Laminin und Laktoferrin. Mittels ELISA wurde eine konzentrationsabhängige Bindung der oberflächenassoziierten Enzyme von M. pneumoniae mit Wirtsproteinen festgestellt, die hinsichtlich der Intensität jedoch Unterschiede aufwies. So konnten ausgeprägte Interaktionen aller Enzyme mit humanem Plasminogen und Vitronektin nachgewiesen werden. Die Bindung von Fibronektin und Laktoferrin ist dagegen nur für einen Teil der glykolytischen Enzyme zu bestätigen. Die Untersuchung verschiedener Einflussfaktoren ergab, dass alle Bindungen zwischen glykolytischen Enzymen und humanen Proteinen spezifisch durch die entsprechenden Antiseren gehemmt werden und dass der Großteil der Interaktionen ionischen Wechselwirkungen unterliegt. Die Bindung zu Plasminogen basiert überwiegend auf Lysin-Resten. Untersuchungen, ob sich die glykolytischen Enzyme gegenseitig in der Bindung zu Wirtsfaktoren beeinflussen, ergab ein komplexes Muster, das hinsichtlich Plasminogen, Fibronektin und Laminin für eine Überlagerung der für die Interaktion maßgeblichen Proteinbereiche spricht. Die Untersuchung einer möglichen Aktivierung von inaktivem Plasminogen zu proteolytisch aktivem Plasmin ergab, dass in Gegenwart aller oberflächenlokalisierten glykolytischen Enzyme von M. pneumoniae Plasmin gebildet wird. Es wurden jedoch Unterschiede im Aktivierungspotenzial nachgewiesen. Die Pyruvatdehydrogenase Untereinheit B zeigte die höchste, die Pyruvatdehydrogenase Untereinheit C die geringste Plasminproduktion. Die Verwendung des gewebespezifischen Plasminogenaktivators führte zu einer höheren Aktivierung als der Urokinase-Typ Plasminogenaktivator. Die Variabilität der Plasminproduktion kann mit der unterschiedlichen Bindungsaffinität der glykolytischen Enzyme zu Plasminogen begründet werden. So besitzt die Pyruvatdehydrogenase Untereinheit B im Vergleich mit der Pyruvatdehydrogenase Untereinheit C ein höheres Bindepotenzial, das sich in der gemessenen Aktivierung widerspiegelt. Die Bildung von Plasmin kann zum Abbau verschiedener extrazellulärer Matrix-Proteine führen. Diese Prozesse sind physiologisch, z. B. in der Fibrinolyse, von Bedeutung. Während in Gegenwart der glykolytischen Enzyme die humanen Proteine Laktoferrin, Laminin und Fibronektin nicht abgebaut wurde, konnte Fibrinogen in Gegenwart der Pyruvatdehydrogenase Untereinheit B bzw. der Phosphoglyceratmutase und Vitronektin durch alle glykolytischen Enzyme (bis auf die Pyruvatdehydrogenase Untereinheit C) degradiert werden. Mit der erstmals durchgeführten Analyse aller glykolytischen Enzyme eines Mikroorganismus hinsichtlich ihrer Lokalisation und der Bindung zu Komponenten der humanen extrazellulären Matrix wurde ein komplexes Netzwerk an Wirt-Erreger-Interaktionen nachgewiesen

    Elongation factor Tu is a multifunctional and processed moonlighting protein

    Get PDF
    Many bacterial moonlighting proteins were originally described in medically, agriculturally, and commercially important members of the low G + C Firmicutes. We show Elongation factor Tu (Ef-Tu) moonlights on the surface of the human pathogens Staphylococcus aureus (SaEf-Tu) and Mycoplasma pneumoniae (MpnEf-Tu), and the porcine pathogen Mycoplasma hyopneumoniae (MhpEf-Tu). Ef-Tu is also a target of multiple processing events on the cell surface and these were characterised using an N-terminomics pipeline. Recombinant MpnEf-Tu bound strongly to a diverse range of host molecules, and when bound to plasminogen, was able to convert plasminogen to plasmin in the presence of plasminogen activators. Fragments of Ef-Tu retain binding capabilities to host proteins. Bioinformatics and structural modelling studies indicate that the accumulation of positively charged amino acids in short linear motifs (SLiMs), and protein processing promote multifunctional behaviour. Codon bias engendered by an A + T rich genome may influence how positively-charged residues accumulate in SLiMs

    Funktion glykolytischer Enzyme von Mycoplasma pneumoniae in der Wirt-Erreger-Interaktion

    Get PDF
    Mycoplasma pneumoniae ist ein parasitär lebendes Bakterium, das eine atypische Pneumonie beim Menschen verursacht. Aufgrund seiner geringen Genomgröße besitzt dieser Organismus einen eingeschränkten Metabolismus sowie eine limitierte Zahl an Pathogenitätsfaktoren. Dennoch ist dieser Mikroorganismus perfekt an seinen Wirt angepasst und es war zu vermuten, dass neben dem komplexen Adhäsionsapparat von M. pneumoniae auch glykolytische Enzyme eine Rolle bei der Interaktion mit humanen Zellen spielen. Diese Enzyme sind maßgeblich bei intrazellulär ablaufenden Stoffwechselprozessen beteiligt. Es wurde jedoch bereits bei anderen Bakterien gezeigt, dass glykolytische Enzyme ebenfalls auf der Bakterienoberfläche zu finden sind und dort mit Komponenten der extrazellulären Matrix des Wirtes interagieren können. Dieser Vorgang trägt offensichtlich zur erfolgreichen Kolonisation des Wirtes bei. Ziel dieser Arbeit war es, alle glykolytischen Enzyme von M. pneumoniae hinsichtlich ihrer Lokalisierung zu beschreiben und Teilaspekte ihrer Funktion in der Interaktion mit Wirtskomponenten zu analysieren. Die glykolytischen Enzyme wurden rekombinant produziert und für die Herstellung von monospezifischen polyklonalen Antikörpern verwendet. Die Lokalisation der Enzyme wurde durch Nachweis in der Membran- und Zytosolfraktion des M. pneumoniae Gesamtantigens untersucht. Mittels Immunfluoreszenz, Colony Blot und Protease-Verdau intakter Bakterienzellen wurde bestätigt, dass acht (Glycerinaldehyd-3-phosphat-Dehydrogenase, Lactatdehydrogenase, Transketolase, Pyruvatdehydrogenase, Phosphoglyceratmutase und Pyruvatdehydrogenase Untereinheiten A-C) der 19 glykolytischen Enzyme mit der Bakterienoberfläche assoziiert vorkommen. Die Untersuchung von Mutanten ergab, dass die Lokalisation der Enzyme nicht an das Vorkommen der für die Anheftung der Bakterien an Zielstrukturen wesentlichen Adhäsine wie die Proteine P1, P40 und P90 sowie das Oberflächenprotein P01, gekoppelt ist. Jedoch sind sowohl intakte Zellen von M. pneumoniae als auch die oberflächenlokalisierten glykolytischen Enzyme in der Lage, an verschiedene humane Zellen zu binden. Eine Analyse der nachweisbaren Proteine auf der Oberfläche der Zellen führte zur Auswahl von sechs humanen Proteinen für weiterführende Studien: Plasminogen, Vitronektin, Fibronektin, Fibrinogen, Laminin und Laktoferrin. Mittels ELISA wurde eine konzentrationsabhängige Bindung der oberflächenassoziierten Enzyme von M. pneumoniae mit Wirtsproteinen festgestellt, die hinsichtlich der Intensität jedoch Unterschiede aufwies. So konnten ausgeprägte Interaktionen aller Enzyme mit humanem Plasminogen und Vitronektin nachgewiesen werden. Die Bindung von Fibronektin und Laktoferrin ist dagegen nur für einen Teil der glykolytischen Enzyme zu bestätigen. Die Untersuchung verschiedener Einflussfaktoren ergab, dass alle Bindungen zwischen glykolytischen Enzymen und humanen Proteinen spezifisch durch die entsprechenden Antiseren gehemmt werden und dass der Großteil der Interaktionen ionischen Wechselwirkungen unterliegt. Die Bindung zu Plasminogen basiert überwiegend auf Lysin-Resten. Untersuchungen, ob sich die glykolytischen Enzyme gegenseitig in der Bindung zu Wirtsfaktoren beeinflussen, ergab ein komplexes Muster, das hinsichtlich Plasminogen, Fibronektin und Laminin für eine Überlagerung der für die Interaktion maßgeblichen Proteinbereiche spricht. Die Untersuchung einer möglichen Aktivierung von inaktivem Plasminogen zu proteolytisch aktivem Plasmin ergab, dass in Gegenwart aller oberflächenlokalisierten glykolytischen Enzyme von M. pneumoniae Plasmin gebildet wird. Es wurden jedoch Unterschiede im Aktivierungspotenzial nachgewiesen. Die Pyruvatdehydrogenase Untereinheit B zeigte die höchste, die Pyruvatdehydrogenase Untereinheit C die geringste Plasminproduktion. Die Verwendung des gewebespezifischen Plasminogenaktivators führte zu einer höheren Aktivierung als der Urokinase-Typ Plasminogenaktivator. Die Variabilität der Plasminproduktion kann mit der unterschiedlichen Bindungsaffinität der glykolytischen Enzyme zu Plasminogen begründet werden. So besitzt die Pyruvatdehydrogenase Untereinheit B im Vergleich mit der Pyruvatdehydrogenase Untereinheit C ein höheres Bindepotenzial, das sich in der gemessenen Aktivierung widerspiegelt. Die Bildung von Plasmin kann zum Abbau verschiedener extrazellulärer Matrix-Proteine führen. Diese Prozesse sind physiologisch, z. B. in der Fibrinolyse, von Bedeutung. Während in Gegenwart der glykolytischen Enzyme die humanen Proteine Laktoferrin, Laminin und Fibronektin nicht abgebaut wurde, konnte Fibrinogen in Gegenwart der Pyruvatdehydrogenase Untereinheit B bzw. der Phosphoglyceratmutase und Vitronektin durch alle glykolytischen Enzyme (bis auf die Pyruvatdehydrogenase Untereinheit C) degradiert werden. Mit der erstmals durchgeführten Analyse aller glykolytischen Enzyme eines Mikroorganismus hinsichtlich ihrer Lokalisation und der Bindung zu Komponenten der humanen extrazellulären Matrix wurde ein komplexes Netzwerk an Wirt-Erreger-Interaktionen nachgewiesen

    Funktion glykolytischer Enzyme von Mycoplasma pneumoniae in der Wirt-Erreger-Interaktion

    No full text
    Mycoplasma pneumoniae ist ein parasitär lebendes Bakterium, das eine atypische Pneumonie beim Menschen verursacht. Aufgrund seiner geringen Genomgröße besitzt dieser Organismus einen eingeschränkten Metabolismus sowie eine limitierte Zahl an Pathogenitätsfaktoren. Dennoch ist dieser Mikroorganismus perfekt an seinen Wirt angepasst und es war zu vermuten, dass neben dem komplexen Adhäsionsapparat von M. pneumoniae auch glykolytische Enzyme eine Rolle bei der Interaktion mit humanen Zellen spielen. Diese Enzyme sind maßgeblich bei intrazellulär ablaufenden Stoffwechselprozessen beteiligt. Es wurde jedoch bereits bei anderen Bakterien gezeigt, dass glykolytische Enzyme ebenfalls auf der Bakterienoberfläche zu finden sind und dort mit Komponenten der extrazellulären Matrix des Wirtes interagieren können. Dieser Vorgang trägt offensichtlich zur erfolgreichen Kolonisation des Wirtes bei. Ziel dieser Arbeit war es, alle glykolytischen Enzyme von M. pneumoniae hinsichtlich ihrer Lokalisierung zu beschreiben und Teilaspekte ihrer Funktion in der Interaktion mit Wirtskomponenten zu analysieren. Die glykolytischen Enzyme wurden rekombinant produziert und für die Herstellung von monospezifischen polyklonalen Antikörpern verwendet. Die Lokalisation der Enzyme wurde durch Nachweis in der Membran- und Zytosolfraktion des M. pneumoniae Gesamtantigens untersucht. Mittels Immunfluoreszenz, Colony Blot und Protease-Verdau intakter Bakterienzellen wurde bestätigt, dass acht (Glycerinaldehyd-3-phosphat-Dehydrogenase, Lactatdehydrogenase, Transketolase, Pyruvatdehydrogenase, Phosphoglyceratmutase und Pyruvatdehydrogenase Untereinheiten A-C) der 19 glykolytischen Enzyme mit der Bakterienoberfläche assoziiert vorkommen. Die Untersuchung von Mutanten ergab, dass die Lokalisation der Enzyme nicht an das Vorkommen der für die Anheftung der Bakterien an Zielstrukturen wesentlichen Adhäsine wie die Proteine P1, P40 und P90 sowie das Oberflächenprotein P01, gekoppelt ist. Jedoch sind sowohl intakte Zellen von M. pneumoniae als auch die oberflächenlokalisierten glykolytischen Enzyme in der Lage, an verschiedene humane Zellen zu binden. Eine Analyse der nachweisbaren Proteine auf der Oberfläche der Zellen führte zur Auswahl von sechs humanen Proteinen für weiterführende Studien: Plasminogen, Vitronektin, Fibronektin, Fibrinogen, Laminin und Laktoferrin. Mittels ELISA wurde eine konzentrationsabhängige Bindung der oberflächenassoziierten Enzyme von M. pneumoniae mit Wirtsproteinen festgestellt, die hinsichtlich der Intensität jedoch Unterschiede aufwies. So konnten ausgeprägte Interaktionen aller Enzyme mit humanem Plasminogen und Vitronektin nachgewiesen werden. Die Bindung von Fibronektin und Laktoferrin ist dagegen nur für einen Teil der glykolytischen Enzyme zu bestätigen. Die Untersuchung verschiedener Einflussfaktoren ergab, dass alle Bindungen zwischen glykolytischen Enzymen und humanen Proteinen spezifisch durch die entsprechenden Antiseren gehemmt werden und dass der Großteil der Interaktionen ionischen Wechselwirkungen unterliegt. Die Bindung zu Plasminogen basiert überwiegend auf Lysin-Resten. Untersuchungen, ob sich die glykolytischen Enzyme gegenseitig in der Bindung zu Wirtsfaktoren beeinflussen, ergab ein komplexes Muster, das hinsichtlich Plasminogen, Fibronektin und Laminin für eine Überlagerung der für die Interaktion maßgeblichen Proteinbereiche spricht. Die Untersuchung einer möglichen Aktivierung von inaktivem Plasminogen zu proteolytisch aktivem Plasmin ergab, dass in Gegenwart aller oberflächenlokalisierten glykolytischen Enzyme von M. pneumoniae Plasmin gebildet wird. Es wurden jedoch Unterschiede im Aktivierungspotenzial nachgewiesen. Die Pyruvatdehydrogenase Untereinheit B zeigte die höchste, die Pyruvatdehydrogenase Untereinheit C die geringste Plasminproduktion. Die Verwendung des gewebespezifischen Plasminogenaktivators führte zu einer höheren Aktivierung als der Urokinase-Typ Plasminogenaktivator. Die Variabilität der Plasminproduktion kann mit der unterschiedlichen Bindungsaffinität der glykolytischen Enzyme zu Plasminogen begründet werden. So besitzt die Pyruvatdehydrogenase Untereinheit B im Vergleich mit der Pyruvatdehydrogenase Untereinheit C ein höheres Bindepotenzial, das sich in der gemessenen Aktivierung widerspiegelt. Die Bildung von Plasmin kann zum Abbau verschiedener extrazellulärer Matrix-Proteine führen. Diese Prozesse sind physiologisch, z. B. in der Fibrinolyse, von Bedeutung. Während in Gegenwart der glykolytischen Enzyme die humanen Proteine Laktoferrin, Laminin und Fibronektin nicht abgebaut wurde, konnte Fibrinogen in Gegenwart der Pyruvatdehydrogenase Untereinheit B bzw. der Phosphoglyceratmutase und Vitronektin durch alle glykolytischen Enzyme (bis auf die Pyruvatdehydrogenase Untereinheit C) degradiert werden. Mit der erstmals durchgeführten Analyse aller glykolytischen Enzyme eines Mikroorganismus hinsichtlich ihrer Lokalisation und der Bindung zu Komponenten der humanen extrazellulären Matrix wurde ein komplexes Netzwerk an Wirt-Erreger-Interaktionen nachgewiesen

    Subunits of the Pyruvate Dehydrogenase Cluster of Mycoplasma pneumoniae Are Surface-Displayed Proteins that Bind and Activate Human Plasminogen

    Get PDF
    The dual role of glycolytic enzymes in cytosol-located metabolic processes and in cell surface-mediated functions with an influence on virulence is described for various micro-organisms. Cell wall-less bacteria of the class Mollicutes including the common human pathogen Mycoplasma pneumoniae possess a reduced genome limiting the repertoire of virulence factors and metabolic pathways. After the initial contact of bacteria with cells of the respiratory epithelium via a specialized complex of adhesins and release of cell-damaging factors, surface-displayed glycolytic enzymes may facilitate the further interac-tion between host and microbe. In this study, we described detection of the four subunits of pyruvate dehydrogenase complex (PDHA-D) among the cytosolic and membrane-associated proteins of M.pneumoniae. Subunits of PDH were cloned, expressed and purified to produce specific polyclonal guinea pig antisera. Using colony blotting, fractionation of total proteins and immunofluorescence experiments, the surface localization of PDHA-C was demonstrated. All pecombinant PDH subunits are able to bind to HeLa cells and human plasminogen. These interactions can be specifically blocked by the corresponding polyclon-al antisera. In addition, an influence of ionic interactions on PDHC-binding to plasminogen as well as of lysine residues on the association of PDHA-D with plasminogen was confirmed. The PDHB subunit was shown to activate plasminogen and the PDHB-plasminogen complex induces degradation of human fibrinogen. Hence, our data indicate that the surface-associated PDH subunits might play a role in the pathogenesis of M.pneumoniae infections by interaction with human plasminogen

    Activation of human plasminogen in the presence of rPDHA-C and degradation of fibrinogen.

    No full text
    <p>(A) Plasminogen bound to rPDHB is converted into plasmin. Wells of ELISA plates were coated with rPDHA-D and incubated with plasminogen. Urokinase (uPA) and plasmin-specific substrate (D-Val-Leu-Lys-<i>p</i>-nitroanilide dihydrochloride; S) were added and incubated overnight. The activity of plasmin was detected by measuring the absorbance at 405 nm. BSA acted as control. Means and standard deviations of eight parallels (** = P<0.01; student’s t-test). (B) Human fibrinogen is degraded by rPDHB. Recombinant protein rPDHB and BSA as control were immobilized in wells of ELISA plates and incubated with plasminogen. After washing, uPa and fibrinogen were added. Samples were taken at different time points up to 2 hours. Degradation products were determined using goat anti-fibrinogen and polyclonal peroxidase-conjugated anti-goat IgG. Data represent means and standard deviations of eight parallels (* = P<0.05; student’s t-test).</p

    Localization of PDHA-D in <i>M</i>. <i>pneumoniae</i> cells.

    No full text
    <p>(A) Reactivity of guinea pig anti-rPDHA-D (1:250) with immobilized membrane and cytosolic proteins of <i>M</i>. <i>pneumoniae</i> M129. Sera to the surface-exposed C-terminal part of the main P1 adhesin (P12) and to cytosolic enolase (Eno) of <i>M</i>. <i>pneumoniae</i> acted as controls. Data show means and standard deviations of eight parallels. (B) Immunofluorescence of fixed <i>M</i>. <i>pneumoniae</i> cells treated with a mixture of guinea pig anti-rPDHA-D and rabbit anti-TX-100 insoluble protein fraction (positive control). Mixture of rabbit anti-TX-100 insoluble protein fraction and guinea pig anti-enolase as well as guinea pig pre-immune serum (PIS) act as negative controls. Detection was carried out by incubation with FITC-conjugated anti-guinea pig IgG and TRITC-conjugated anti-rabbit IgG. Bar: 10 ÎĽm. <b>(C)</b> Immunoblot reaction of 8 days-old <i>M</i>. <i>pneumoniae</i> M129 colonies. Colonies were covered with nitrocellulose membrane followed by incubation with sera to recombinant proteins PDHA-D. The reaction of anti-PDHA and anti-PDHD is illustrated as an example. Further positive signals were obtained after incubation of blots with anti-PDHB, anti- PDHC and the positive control anti-rP12, respectively (data not shown). The control anti-enolase demonstrated a negative result. Bar: 200 ÎĽm. (D) Results of the trypsin treatment of freshly grown <i>M</i>. <i>pneumoniae</i> M129 cells. Harvested bacteria were treated with increasing concentrations of trypsin or PBS as control. The reaction was stopped by boiling, samples were separated by SDS-PAGE and blotted. Nitrocellulose membranes were incubated with sera to cytosolic enolase (negative control), the surface-exposed near C-terminal part of adhesin P1 (P12; positive control) and to recombinant PDHA-D, respectively. Treatment of recombinant proteins enolase and PDHD with trypsin was used to confirm digestibility.</p

    Binding of recombinant proteins rPDHA-D to human cells.

    No full text
    <p>(A) ELISA results after incubation of recombinant proteins with immobilized HeLa cells and detection with antisera to PDHA-D. OD values were compared with wells coated with recombinant proteins. Recombinant protein rP8 (middle part of the P1 protein without interaction to human cells) and remaining <i>E</i>. <i>coli</i>-specific proteins after Ni-agarose affinity chromatography (BL21(DE3)) acted as controls. The C-terminal part of the P1 protein (rP12) was used as positive control. Data represent means and standard deviations of eight parallels. (B) Influence of sera against recombinant proteins on binding of rPDHA-D to HeLa cells. rPDHA-D were pre-incubated with antisera to PDHA-D and added to immobilized HeLa cells. Incubation of recombinant proteins with guinea pig pre-immune serum was used as control. Data represent means and standard deviations of eight parallels (*** = P<0.001; student’s t-test). (C) Results of adhesion inhibition assay. Wells of ELISA plates were coated with HeLa cells. <i>M</i>. <i>pneumoniae</i> cells were pre-incubated with different antisera and added to immobilized human cells. Detection of bound mycoplasmas was carried out with rabbit antiserum to the fraction of TX-100 insoluble proteins of <i>M</i>. <i>pneumoniae</i>. Means and standard deviations of three independent experiments with eight parallels each are shown (*** = P<0.001; student’s t-test).</p

    Characterization of interaction between human plasminogen and rPDHA-D.

    No full text
    <p>(A) The role of ionic interactions was analyzed using an ELISA assay. Recombinant proteins were immobilized to 96-well plates. Plasminogen was incubated with PBS and different concentrations of NaCl and added to the wells. Bound plasminogen was detected using rabbit anti-plasminogen. Data represent means and standard deviations of eight parallels (*** = P<0.001; student’s t-test). (B) To investigate the role of lysine, wells coated with rPDHA-D were incubated with human plasminogen in the presence of ε-aminocaproic acid (ACA). Peptide FPAMFQIFTHAA (PDHB-P3, [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0126600#pone.0126600.ref021" target="_blank">21</a>]) served as negative control. Bound plasminogen was detected as described. Data represent means and standard deviations of eight parallels (** = P<0.01, *** = P<0.001; student’s t-test).</p

    Production and reaction of recombinant proteins rPDHA-D and corresponding polyclonal guinea pig antisera.

    No full text
    <p>EK-LIC vector and <i>E</i>. <i>coli</i> BL21(DE3) were used to produce recombinant proteins. (A) Proteins were purified, concentrated, separated by SDS-PAGE and stained with Coomassie. (B) Western blot reaction of total proteins of <i>M</i>. <i>pneumoniae</i> M129 with antisera to rPDHA-D. (C) Results of ELISA experiments to analyze the reactivity of antisera to total proteins and to PDH subunits A-D with whole antigen of <i>M</i>. <i>pneumoniae</i> M129. Data represent means and standard deviations of eight parallels.</p
    corecore