1,467 research outputs found

    Elastic Behavior of a Two-dimensional Crystal near Melting

    Full text link
    Using positional data from video-microscopy we determine the elastic moduli of two-dimensional colloidal crystals as a function of temperature. The moduli are extracted from the wave-vector-dependent normal mode spring constants in the limit q→0q\to 0 and are compared to the renormalized Young's modulus of the KTHNY theory. An essential element of this theory is the universal prediction that Young's modulus must approach 16π16 \pi at the melting temperature. This is indeed observed in our experiment.Comment: 4 pages, 3 figure

    Many-body interactions and melting of colloidal crystals

    Full text link
    We study the melting behavior of charged colloidal crystals, using a simulation technique that combines a continuous mean-field Poisson-Boltzmann description for the microscopic electrolyte ions with a Brownian-dynamics simulation for the mesoscopic colloids. This technique ensures that many-body interactions between the colloids are fully taken into account, and thus allows us to investigate how many-body interactions affect the solid-liquid phase behavior of charged colloids. Using the Lindemann criterion, we determine the melting line in a phase-diagram spanned by the colloidal charge and the salt concentration. We compare our results to predictions based on the established description of colloidal suspensions in terms of pairwise additive Yukawa potentials, and find good agreement at high-salt, but not at low-salt concentration. Analyzing the effective pair-interaction between two colloids in a crystalline environment, we demonstrate that the difference in the melting behavior observed at low salt is due to many-body interactions

    Testing the relevance of effective interaction potentials between highly charged colloids in suspension

    Full text link
    Combining cell and Jellium model mean-field approaches, Monte Carlo together with integral equation techniques, and finally more demanding many-colloid mean-field computations, we investigate the thermodynamic behavior, pressure and compressibility of highly charged colloidal dispersions, and at a more microscopic level, the force distribution acting on the colloids. The Kirkwood-Buff identity provides a useful probe to challenge the self-consistency of an approximate effective screened Coulomb (Yukawa) potential between colloids. Two effective parameter models are put to the test: cell against renormalized Jellium models

    Measuring the equation of state of a hard-disc fluid

    Full text link
    We use video microscopy to study a two-dimensional (2D) model fluid of charged colloidal particles suspended in water and compute the pressure from the measured particle configurations. Direct experimental control over the particle density by means of optical tweezers allows the precise measurement of pressure as a function of density. We compare our data with theoretical predictions for the equation of state, the pair-correlation function and the compressibility of a hard-disc fluid and find good agreement, both for the fluid and the solid phase. In particular the location of the transition point agrees well with results from Monte Carlo simulations.Comment: 7 pages, to appear in EPL, slightly corrected versio

    Effect of many-body interactions on the solid-liquid phase-behavior of charge-stabilized colloidal suspensions

    Full text link
    The solid-liquid phase-diagram of charge-stabilized colloidal suspensions is calculated using a technique that combines a continuous Poisson-Boltzmann description for the microscopic electrolyte ions with a molecular-dynamics simulation for the macroionic colloidal spheres. While correlations between the microions are neglected in this approach, many-body interactions between the colloids are fully included. The solid-liquid transition is determined at a high colloid volume fraction where many-body interactions are expected to be strong. With a view to the Derjaguin-Landau-Verwey-Overbeek theory predicting that colloids interact via Yukawa pair-potentials, we compare our results with the phase diagram of a simple Yukawa liquid. Good agreement is found at high salt conditions, while at low ionic strength considerable deviations are observed. By calculating effective colloid-colloid pair-interactions it is demonstrated that these differences are due to many-body interactions. We suggest a density-dependent pair-potential in the form of a truncated Yukawa potential, and show that it offers a considerably improved description of the solid-liquid phase-behavior of concentrated colloidal suspensions

    Magnetic properties of Quantum Corrals from first principles calculations

    Full text link
    We present calculations for electronic and magnetic properties of surface states confined by a circular quantum corral built of magnetic adatoms (Fe) on a Cu(111) surface. We show the oscillations of charge and magnetization densities within the corral and the possibility of the appearance of spin--polarized states. In order to classify the peaks in the calculated density of states with orbital quantum numbers we analyzed the problem in terms of a simple quantum mechanical circular well model. This model is also used to estimate the behaviour of the magnetization and energy with respect to the radius of the circular corral. The calculations are performed fully relativistically using the embedding technique within the Korringa-Kohn-Rostoker method.Comment: 14 pages, 9 figures, submitted to J. Phys. Cond. Matt. special issue on 'Theory and Simulation of Nanostructures

    Injection of photoelectrons into dense argon gas

    Full text link
    The injection of photoelectrons in a gaseous or liquid sample is a widespread technique to produce a cold plasma in a weakly--ionized system in order to study the transport properties of electrons in a dense gas or liquid. We report here the experimental results of photoelectron injection into dense argon gas at the temperatureT=142.6 K as a function of the externally applied electric field and gas density. We show that the experimental data can be interpreted in terms of the so called Young-Bradbury model only if multiple scattering effects due to the dense environment are taken into account when computing the scattering properties and the energetics of the electrons.Comment: 18 pages, 10 figures, figure nr. 10 has been redrawn, to be submitted to Plasma Sources Science and Technolog

    On the nature of long-range contributions to pair interactions between charged colloids in two dimensions

    Full text link
    We perform a detailed analysis of solutions of the inverse problem applied to experimentally measured two-dimensional radial distribution functions for highly charged latex dispersions. The experiments are carried out at high colloidal densities and under low-salt conditions. At the highest studied densities, the extracted effective pair potentials contain long-range attractive part. At the same time, we find that for the best distribution functions available the range of stability of the solutions is limited by the nearest neighbour distance between the colloidal particles. Moreover, the measured pair distribution functions can be explained by purely repulsive pair potentials contained in the stable part of the solution.Comment: 6 pages, 5 figure

    The osmotic pressure of charged colloidal suspensions: A unified approach to linearized Poisson-Boltzmann theory

    Full text link
    We study theoretically the osmotic pressure of a suspension of charged objects (e.g., colloids, polyelectrolytes, clay platelets, etc.) dialyzed against an electrolyte solution using the cell model and linear Poisson-Boltzmann (PB) theory. From the volume derivative of the grand potential functional of linear theory we obtain two novel expressions for the osmotic pressure in terms of the potential- or ion-profiles, neither of which coincides with the expression known from nonlinear PB theory, namely, the density of microions at the cell boundary. We show that the range of validity of linearization depends strongly on the linearization point and proof that expansion about the selfconsistently determined average potential is optimal in several respects. For instance, screening inside the suspension is automatically described by the actual ionic strength, resulting in the correct asymptotics at high colloid concentration. Together with the analytical solution of the linear PB equation for cell models of arbitrary dimension and electrolyte composition explicit and very general formulas for the osmotic pressure ensue. A comparison with nonlinear PB theory is provided. Our analysis also shows that whether or not linear theory predicts a phase separation depends crucially on the precise definition of the pressure, showing that an improper choice could predict an artificial phase separation in systems as important as DNA in physiological salt solution.Comment: 16 pages, 5 figures, REVTeX4 styl

    On the fluid-fluid phase separation in charged-stabilized colloidal suspensions

    Full text link
    We develop a thermodynamic description of particles held at a fixed surface potential. This system is of particular interest in view of the continuing controversy over the possibility of a fluid-fluid phase separation in aqueous colloidal suspensions with monovalent counterions. The condition of fixed surface potential allows in a natural way to account for the colloidal charge renormalization. In a first approach, we assess the importance of the so called ``volume terms'', and find that in the absence of salt, charge renormalization is sufficient to stabilize suspension against a fluid-fluid phase separation. Presence of salt, on the other hand, is found to lead to an instability. A very strong dependence on the approximations used, however, puts the reality of this phase transition in a serious doubt. To further understand the nature of the instability we next study a Jellium-like approximation, which does not lead to a phase separation and produces a relatively accurate analytical equation of state for a deionized suspensions of highly charged colloidal spheres. A critical analysis of various theories of strongly asymmetric electrolytes is presented to asses their reliability as compared to the Monte Carlo simulations
    • …
    corecore