38 research outputs found

    A Diagnostic Algorithm To Investigate Pyrazinamide and Ethambutol Resistance in Rifampin-Resistant Mycobacterium tuberculosis Isolates in a Low-Incidence Setting.

    Get PDF
    Phenotypic drug susceptibility testing (DST) for the two first-line tuberculosis drugs ethambutol and pyrazinamide is known to yield unreliable and inaccurate results. In this prospective study, we propose a diagnostic algorithm combining phenotypic DST with Sanger sequencing to inform clinical decision-making for drug-resistant Mycobacterium tuberculosis complex isolates. Sequencing results were validated using whole-genome sequencing (WGS) of the isolates. Resistance-conferring mutations obtained by pncA sequencing correlated well with phenotypic DST results for pyrazinamide. Phenotypic resistance to ethambutol was only partly explained by mutations in the embB 306 codon. Additional resistance-conferring mutations were found in the embB gene at codons 354, 406, and 497. In several isolates that tested ethambutol susceptibility by phenotypic DST, well-known resistance-conferring embB mutations were determined. Thus, targeted Sanger sequencing beyond the embB 306 codon or WGS together with phenotypic DST should be employed to ensure reliable ethambutol drug susceptibility testing, as a basis for the rational design of multidrug-resistant tuberculosis regimens with or without ethambutol

    Non-Steroidal Anti-inflammatory Drugs As Host-Directed Therapy for Tuberculosis: A Systematic Review

    Get PDF
    Lengthy, antimicrobial therapy targeting the pathogen is the mainstay of conventional tuberculosis treatment, complicated by emerging drug resistances. Host-directed therapies, including non-steroidal anti-inflammatory drugs (NSAIDs), in contrast, target host factors to mitigate disease severity. In the present Systematic Review, we investigate whether NSAIDs display any effects as therapy of TB and discuss possible mechanisms of action of NSAIDs as adjunctive therapy of TB. Ten studies, seven preclinical studies in mice and three clinical trials, were included and systematically reviewed. Our results point toward a beneficial effect of NSAIDs as adjunct to current TB therapy regimens, mediated by decreased lung pathology balancing host-immune reaction. The determination of the best timing for their administration in order to obtain the potential beneficial effects needs further investigation. Even if the preclinical evidence requires clinical evaluation, NSAIDs might represent a potential safe, simple, and cheap improvement in therapy of TB

    Random glucose sampling as screening tool for diabetes among disadvantaged tuberculosis patients residing in urban slums in India.

    Get PDF
    Recently, a two-step diagnostic algorithm to diagnose diabetes among TB patients was proposed comprising random glucose and point-of-care HbA1c. This study evaluates the first part of this algorithm among disadvantaged TB patients. http://ow.ly/UI7d30nK1UN

    Phenotypic and transcriptomic analyses of seven clinical Stenotrophomonas maltophilia isolates identify a small set of shared and commonly regulated genes involved in the biofilm lifestyle

    Get PDF
    Stenotrophomonas maltophilia is one of the most frequently isolated multidrug-resistant nosocomial opportunistic pathogens. It contributes to disease progression in cystic fibrosis (CF) patients and is frequently isolated from wounds, infected tissues, and catheter surfaces. On these diverse surfaces S. maltophilia lives in single-species or multispecies biofilms. Since very little is known about common processes in biofilms of different S. maltophilia isolates, we analyzed the biofilm profiles of 300 clinical and environmental isolates from Europe of the recently identified main lineages Sgn3, Sgn4, and Sm2 to Sm18. The analysis of the biofilm architecture of 40 clinical isolates revealed the presence of multicellular structures and high phenotypic variability at a strain-specific level. Further, transcriptome analyses of biofilm cells of seven clinical isolates identified a set of 106 shared strongly expressed genes and 33 strain-specifically expressed genes. Surprisingly, the transcriptome profiles of biofilm versus planktonic cells revealed that just 9.43% ± 1.36% of all genes were differentially regulated. This implies that just a small set of shared and commonly regulated genes is involved in the biofilm lifestyle. Strikingly, iron uptake appears to be a key factor involved in this metabolic shift. Further, metabolic analyses implied that S. maltophilia employs a mostly fermentative growth mode under biofilm conditions. The transcriptome data of this study together with the phenotypic and metabolic analyses represent so far the largest data set on S. maltophilia biofilm versus planktonic cells. This study will lay the foundation for the identification of strategies for fighting S. maltophilia biofilms in clinical and industrial settings. IMPORTANCE Microorganisms living in a biofilm are much more tolerant to antibiotics and antimicrobial substances than planktonic cells are. Thus, the treatment of infections caused by microorganisms living in biofilms is extremely difficult. Nosocomial infections (among others) caused by S. maltophilia, particularly lung infection among CF patients, have increased in prevalence in recent years. The intrinsic multidrug resistance of S. maltophilia and the increased tolerance to antimicrobial agents of its biofilm cells make the treatment of S. maltophilia infection difficult. The significance of our research is based on understanding the common mechanisms involved in biofilm formation of different S. maltophilia isolates, understanding the diversity of biofilm architectures among strains of this species, and identifying the differently regulated processes in biofilm versus planktonic cells. These results will lay the foundation for the treatment of S. maltophilia biofilms

    The phylogenetic landscape and nosocomial spread of the multidrug-resistant opportunist Stenotrophomonas maltophilia

    Get PDF
    Recent studies portend a rising global spread and adaptation of human- or healthcare-associated pathogens. Here, we analyse an international collection of the emerging, multidrug-resistant, opportunistic pathogen Stenotrophomonas maltophilia from 22 countries to infer population structure and clonality at a global level. We show that the S. maltophilia complex is divided into 23 monophyletic lineages, most of which harbour strains of all degrees of human virulence. Lineage Sm6 comprises the highest rate of human-associated strains, linked to key virulence and resistance genes. Transmission analysis identifies potential outbreak events of genetically closely related strains isolated within days or weeks in the same hospitals

    Do genetic factors protect for early onset lung cancer? A case control study before the age of 50 years

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Early onset lung cancer shows some familial aggregation, pointing to a genetic predisposition. This study was set up to investigate the role of candidate genes in the susceptibility to lung cancer patients younger than 51 years at diagnosis.</p> <p>Methods</p> <p>246 patients with a primary, histologically or cytologically confirmed neoplasm, recruited from 2000 to 2003 in major lung clinics across Germany, were matched to 223 unrelated healthy controls. 11 single nucleotide polymorphisms of genes with reported associations to lung cancer have been genotyped.</p> <p>Results</p> <p>Genetic associations or gene-smoking interactions was found for <it>GPX1(Pro200Leu) </it>and <it>EPHX1(His113Tyr)</it>. Carriers of the Leu-allele of <it>GPX1(Pro200Leu) </it>showed a significant risk reduction of OR = 0.6 (95% CI: 0.4–0.8, p = 0.002) in general and of OR = 0.3 (95% CI:0.1–0.8, p = 0.012) within heavy smokers. We could also find a risk decreasing genetic effect for His-carriers of <it>EPHX1(His113Tyr) </it>for moderate smokers (OR = 0.2, 95% CI:0.1–0.7, p = 0.012). Considered both variants together, a monotone decrease of the OR was found for smokers (OR of 0.20; 95% CI: 0.07–0.60) for each protective allele.</p> <p>Conclusion</p> <p>Smoking is the most important risk factor for young lung cancer patients. However, this study provides some support for the T-Allel of <it>GPX1(Pro200Leu) </it>and the C-Allele of <it>EPHX1(His113Tyr) </it>to play a protective role in early onset lung cancer susceptibility.</p

    Type VII Secretion Systems in Gram-Positive Bacteria

    No full text
    Bacterial secretion systems are sophisticated molecular machines that fulfil a wide range of important functions, which reach from export/secretion of essential proteins or virulence factors to the implication in conjugation processes. In contrast to the widely distributed Sec and Twin Arginine Translocation (TAT) systems, the recently identified ESX/type VII systems show a more restricted distribution and are typical for mycobacteria and other high-GC Actinobacteria. Similarly, type VII-like secretion systems have been described in low-GC Gram-positive bacteria belonging to the phylum Firmicutes. While the most complex organization of type VII secretion systems currently known is found in slow-growing mycobacteria, which harbour up to 5 chromosomal-encoded systems (ESX-1 to ESX-5), much simpler organization is reported for type VII-like systems in Firmicutes. In this chapter, we describe common and divergent features of type VII- and type VII-like secretion pathways and also comment on their biological key roles, many of which are related to species-/genus-specific host-pathogen interactions and/or virulence mechanisms

    Type VII Secretion Systems in Gram-Positive Bacteria

    No full text
    Bacterial secretion systems are sophisticated molecular machines that fulfil a wide range of important functions, which reach from export/secretion of essential proteins or virulence factors to the implication in conjugation processes. In contrast to the widely distributed Sec and Twin Arginine Translocation (TAT) systems, the recently identified ESX/type VII systems show a more restricted distribution and are typical for mycobacteria and other high-GC Actinobacteria. Similarly, type VII-like secretion systems have been described in low-GC Gram-positive bacteria belonging to the phylum Firmicutes. While the most complex organization of type VII secretion systems currently known is found in slow-growing mycobacteria, which harbour up to 5 chromosomal-encoded systems (ESX-1 to ESX-5), much simpler organization is reported for type VII-like systems in Firmicutes. In this chapter, we describe common and divergent features of type VII- and type VII-like secretion pathways and also comment on their biological key roles, many of which are related to species-/genus-specific host-pathogen interactions and/or virulence mechanisms

    Prioritising children and adolescents in the tuberculosis response of the WHO European Region

    No full text
    In 2017, in recognition of the challenges faced by Member States in managing childhood and adolescent tuberculosis (TB) at a country level, the WHO Regional Office for Europe held a Regional Consultation. In total, 35 countries participated in the consultations representing both high- and low-incidence Member States. Here, we provide an overview of the existing World Health Organization (WHO) documents and guidelines on childhood and adolescent TB and describe the outcomes of this regional meeting. National childhood and adolescent TB guidelines are available in 25% of Member States, while 33% reported that no such guidelines are at hand. In the majority of countries (83%), childhood and adolescent TB is part of the National Strategic Plan. The most pressing challenges in managing paediatric TB comprise the lack of adequate drug formulations, the difficult diagnosis, and treatment of presumed latent TB infection. Investments into childhood and adolescent TB need to be further advocated to achieve the End TB goals set by WHO to eliminate TB by 2030
    corecore