43 research outputs found

    Scavenging of ultrafine particles by rainfall at a boreal site: observations and model estimations

    No full text
    International audienceValues of the scavenging coefficient were determined from observations of ultrafine particles (with diameters in the range 10?510 nm) during rain events at a boreal forest site in Southern Finland between 1996 and 2001. The estimated range of values of the scavenging coefficient was [7×10?6?4×10?5] s?1, which is generally higher than model calculations based only on below-cloud processes (Brownian diffusion, interception, and typical charge effects). A new model that includes below-cloud scavenging processes, mixing of ultrafine particles from the boundary layer (BL) into cloud, followed by cloud condensation nuclei activation and in-cloud removal by rainfall, is presented. The effective scavenging coefficients estimated from this new model have values comparable with those obtained from observations. Results show that ultrafine particle removal by rain depends on aerosol size, rainfall intensity, mixing processes between BL and cloud elements, in-cloud scavenged fraction, in-cloud collection efficiency, and in-cloud coagulation with cloud droplets. Implications for the treatment of scavenging of BL ultrafine particles in numerical models are discussed

    Effects of Initial Age Structure of Managed Norway Spruce Forest Area on Net Climate Impact of Using Forest Biomass for Energy

    Get PDF
    We investigated how the initial age structure of a managed, middle boreal (62A degrees N), Norway spruce-dominated (Picea abies L. Karst.) forest area affects the net climate impact of using forest biomass for energy. The model-based analysis used a gap-type forest ecosystem model linked to a life cycle assessment (LCA) tool. The net climate impact of energy biomass refers to the difference in annual net CO2 exchange between the biosystem using forest biomass (logging residues from final felling) and the fossil (reference) system using coal. In the simulations over the 80-year period, the alternative initial age structures of the forest areas were (i) skewed to the right (dominated by young stands), (ii) normally distributed (dominated by middle-aged stands), (iii) skewed to the left (dominated by mature stands), and (iv) evenly distributed (same share of different age classes). The effects of management on net climate impacts were studied using current recommendations as a baseline with a fixed rotation period of 80 years. In alternative management scenarios, the volume of the growing stock was maintained 20% higher over the rotation compared to the baseline, and/or nitrogen fertilization was used to enhance carbon sequestration. According to the results, the initial age structure of the forest area affected largely the net climate impact of using energy biomass over time. An initially right-skewed age structure produced the highest climate benefits over the 80-year simulation period, in contrast to the left-skewed age structure. Furthermore, management that enhanced carbon sequestration increased the potential of energy biomass to replace coal, reducing CO2 emissions and enhancing climate change mitigation.Peer reviewe

    A look at aerosol formation using data mining techniques

    Get PDF
    International audienceAtmospheric aerosol particle formation is frequently observed throughout the atmosphere, but despite various attempts of explanation, the processes behind it remain unclear. In this study data mining techniques were used to find the key parameters needed for atmospheric aerosol particle formation to occur. A dataset of 8 years of 80 variables collected at the boreal forest station (SMEAR II) in Southern Finland was used, incorporating variables such as radiation, humidity, SO2, ozone and present aerosol surface area. Data analysis were done using clustering and classification methods. The aim of this approach was to gain new parameters independent of any subjective interpretation. This resulted in two key parameters, relative humidity and preexisting aerosol particle surface (condensation sink), capable in explaining 88% of the nucleation events. The inclusion of any further parameters did not improve the results notably. Using these two variables it was possible to derive a nucleation probability function. Interestingly, the two most important variables are related to mechanisms that prevent the nucleation from starting and particles from growing, while parameters related to initiation of particle formation seemed to be less important. Nucleation occurs only with low relative humidity and condensation sink values. One possible explanation for the effect of high water content is that it prevents biogenic hydrocarbon ozonolysis reactions from producing sufficient amounts of low volatility compounds, which might be able to nucleate. Unfortunately the most important biogenic hydrocarbon compound emissions were not available for this study. Another effect of water vapour may be due to its linkage to cloudiness which may prevent the formation of nucleating and/or condensing vapours. A high number of preexisting particles will act as a sink for condensable vapours that otherwise would have been able to form sufficient supersaturation and initiate the nucleation process

    Holistic evaluation of the environmental impacts of shipping in the sensitive region of Ria de Aveiro

    Get PDF
    © 2024 The Authors. Published by Elsevier B.V. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/Shipping activity can be a substantial source of pollution and impact on the environment, including air, water and ecosystems, as well as adverse health and climatic effects. Due to the distribution of maritime transport activity routes in the EU, a large portion of the population is exposed to shipping pollution throughout Europe. The ongoing European project EMERGE aims to investigate and quantify these impacts over Europe, and in more detail, in specific case studies regions. The Aveiro lagoon region in Portugal is one of these case studies. This region is a Natura 2000 area, and also includes a medium-sized port. Both air quality and water modelling tools were applied to assess the impact of the emissions and discharges from shipping (to air and water) in the region in 2018. Additionally, ecotoxicological impacts were determined by bioassays to evaluate the impact of scrubber-water discharges on the most sensitive stages of marine invertebrates, and on the post-exposure feeding inhibition of crustacean and bivalve species. The results show that there was a substantial increase in atmospheric pollutant concentrations due to emissions attributed to shipping, which was most relevant for NOx and SO2 (up to a 30 % shipping contribution). There was no significant degradation of the water quality, mainly as the ships operating in this area did not have scrubber equipment. The ecotoxicological tests were performed with three samples of scrubber water, including one artificial sample and two samples collected on-board ships. If scrubber water would have been discharged in this area, the results indicated that the majority of the tested species would be exposed to lowest observed effect concentration (LOEC) for the different scrubber-water samples, as well as to substantial concentrations of metals, PAHs, and alkylated PAHs.Peer reviewe

    New insights into nocturnal nucleation

    Get PDF
    Formation of new aerosol particles by nucleation and growth is a significant source of aerosols in the atmosphere. New particle formation events usually take place during daytime, but in some locations they have been observed also at night. In the present study we have combined chamber experiments, quantum chemical calculations and aerosol dynamics models to study nocturnal new particle formation. All our approaches demonstrate, in a consistent manner, that the oxidation products of monoterpenes play an important role in nocturnal nucleation events. By varying the conditions in our chamber experiments, we were able to reproduce the very different types of nocturnal events observed earlier in the atmosphere. The exact strength, duration and shape of the events appears to be sensitive to the type and concentration of reacting monoterpenes, as well as the extent to which the monoterpenes are exposed to ozone and potentially other atmospheric oxidants

    Transcriptomic alterations in the heart of non-obese type 2 diabetic Goto-Kakizaki rats

    Get PDF
    BACKGROUND: There is a spectacular rise in the global prevalence of type 2 diabetes mellitus (T2DM) due to the worldwide obesity epidemic. However, a significant proportion of T2DM patients are non-obese and they also have an increased risk of cardiovascular diseases. As the Goto-Kakizaki (GK) rat is a well-known model of non-obese T2DM, the goal of this study was to investigate the effect of non-obese T2DM on cardiac alterations of the transcriptome in GK rats. METHODS: Fasting blood glucose, serum insulin and cholesterol levels were measured at 7, 11, and 15 weeks of age in male GK and control rats. Oral glucose tolerance test and pancreatic insulin level measurements were performed at 11 weeks of age. At week 15, total RNA was isolated from the myocardium and assayed by rat oligonucleotide microarray for 41,012 genes, and then expression of selected genes was confirmed by qRT-PCR. Gene ontology and protein-protein network analyses were performed to demonstrate potentially characteristic gene alterations and key genes in non-obese T2DM. RESULTS: Fasting blood glucose, serum insulin and cholesterol levels were significantly increased, glucose tolerance and insulin sensitivity were significantly impaired in GK rats as compared to controls. In hearts of GK rats, 204 genes showed significant up-regulation and 303 genes showed down-regulation as compared to controls according to microarray analysis. Genes with significantly altered expression in the heart due to non-obese T2DM includes functional clusters of metabolism (e.g. Cyp2e1, Akr1b10), signal transduction (e.g. Dpp4, Stat3), receptors and ion channels (e.g. Sln, Chrng), membrane and structural proteins (e.g. Tnni1, Mylk2, Col8a1, Adam33), cell growth and differentiation (e.g. Gpc3, Jund), immune response (e.g. C3, C4a), and others (e.g. Lrp8, Msln, Klkc1, Epn3). Gene ontology analysis revealed several significantly enriched functional inter-relationships between genes influenced by non-obese T2DM. Protein-protein interaction analysis demonstrated that Stat is a potential key gene influenced by non-obese T2DM. CONCLUSIONS: Non-obese T2DM alters cardiac gene expression profile. The altered genes may be involved in the development of cardiac pathologies and could be potential therapeutic targets in non-obese T2DM

    BACH2 immunodeficiency illustrates an association between super-enhancers and haploinsufficiency.

    Get PDF
    The transcriptional programs that guide lymphocyte differentiation depend on the precise expression and timing of transcription factors (TFs). The TF BACH2 is essential for T and B lymphocytes and is associated with an archetypal super-enhancer (SE). Single-nucleotide variants in the BACH2 locus are associated with several autoimmune diseases, but BACH2 mutations that cause Mendelian monogenic primary immunodeficiency have not previously been identified. Here we describe a syndrome of BACH2-related immunodeficiency and autoimmunity (BRIDA) that results from BACH2 haploinsufficiency. Affected subjects had lymphocyte-maturation defects that caused immunoglobulin deficiency and intestinal inflammation. The mutations disrupted protein stability by interfering with homodimerization or by causing aggregation. We observed analogous lymphocyte defects in Bach2-heterozygous mice. More generally, we observed that genes that cause monogenic haploinsufficient diseases were substantially enriched for TFs and SE architecture. These findings reveal a previously unrecognized feature of SE architecture in Mendelian diseases of immunity: heterozygous mutations in SE-regulated genes identified by whole-exome/genome sequencing may have greater significance than previously recognized

    Comparative genomic analysis of innate immunity reveals novel and conserved components in crustacean food crop species

    Full text link

    Über prĂ€-Ă€quatoriale Sklerektomie bei Netzhautablösung

    No full text
    corecore