211 research outputs found

    Two-Loop O(αt2){\cal O}(\alpha_t^2) Corrections to the Neutral Higgs Boson Masses in the CP-Violating NMSSM

    Full text link
    We present our calculation of the two-loop corrections of O(αt2){\cal O}(\alpha_t^2) to the neutral Higgs boson masses of the CP-violating Next-to-Minimal Supersymmetric extension of the Standard Model (NMSSM). The calculation is performed in the Feynman diagrammatic approach in the gaugeless limit at vanishing external momentum. We apply a mixed DR‾\overline{\mathrm{DR}}-on-shell (OS) renormalization scheme for the NMSSM input parameters. Furthermore, we exploit a DR‾\overline{\mathrm{DR}} as well as an OS renormalization in the top/stop sector. The corrections are implemented in the Fortran code NMSSMCALC for the calculation of the Higgs spectrum both in the CP-conserving and CP-violating NMSSM. The code also provides the Higgs boson decays including the state-of-the-art higher-order corrections. The corrections computed in this work improve the already available corrections in NMSSMCALC which are the full one-loop corrections without any approximation and the two-loop O(αtαs){\cal O}(\alpha_t \alpha_s) corrections in the gaugeless limit and at vanishing external momentum. Depending on the chosen parameter point, we find that the O(αtαs+αt2){\cal O}(\alpha_t \alpha_s + \alpha_t^2) corrections add about 4-7% to the one-loop mass of the SM-like Higgs boson for DR‾\overline{\mathrm{DR}} renormalization in the top/stop sector and they reduce the mass by about 6-9% if OS renormalization is applied. For an estimate of the theoretical uncertainty we vary the renormalization scale and change the renormalization scheme and show that care has to be taken in the corresponding interpretation

    Temperature dependent band structure of the Kondo insulator

    Full text link
    We present a Qantum Monte Carlo (QMC) study of the temperature dependent dynamics of the Kondo insulator. Working at the so-called symmetrical point allows to perform minus-sign free QMC simulations and thus reach temperatures of less than 1% of the conduction electron bandwidth. Study of the temperature dependence of the single particle Green's function and dynamical spin correlation function shows a surprisingly intricate low temperature band structure and gives evidence for two characteristic temperatures, which we identify with the Kondo and coherence temperature, respectively. In particular, the data show a temperature induced metal-insulator transition at the coherence temperature.Comment: RevTex-file, 4 PRB pages with 4 eps figures. Hardcopies of figures (or the entire manuscript) can be obtained by e-mail request to: [email protected]

    Higgs-boson masses and mixing matrices in the NMSSM: analysis of on-shell calculations

    Get PDF
    We analyze the Higgs-boson masses and mixing matrices in the NMSSM based on an on-shell (OS) renormalization of the gauge-boson and Higgs-boson masses and the parameters of the top/scalar top sector. We compare the implementation of the OS calculations in the codes NMSSMCALC and NMSSM-FeynHiggs up to O(αtαs). We identify the sources of discrepancies at the one- and at the twoloop level. Finally we compare the OS and DR evaluation as implemented in NMSSMCALC. The results are important ingredients for an estimate of the theoretical precision of Higgs-boson mass calculations in the NMSSM

    Signs of composite Higgs pair production at next-to-leading order

    Get PDF
    In composite Higgs models the Higgs boson arises as a pseudo-Goldstone boson from a strongly-interacting sector. Fermion mass generation is possible through partial compositeness accompanied by the appearance of new heavy fermionic resonances. The Higgs couplings to the Standard Model (SM) particles and between the Higgs bosons themselves are modified with respect to the SM. Higgs pair production is sensitive to the trilinear Higgs self-coupling but also to anomalous couplings like the novel 2-Higgs-2-fermion coupling emerging in composite Higgs models. The QCD corrections to SM Higgs boson pair production are known to be large. In this paper we compute, in the limit of heavy loop particle masses, the next-to-leading order (NLO) QCD corrections to Higgs pair production in composite Higgs models without and with new heavy fermions. The relative QCD corrections are found to be almost insensitive both to the compositeness of the Higgs boson and to the details of the heavy fermion spectrum, since the leading order cross section dominantly factorizes. With the obtained results we investigate the question if, taking into account Higgs coupling constraints, new physics could first be seen in Higgs pair production. We find this to be the case in the high-luminosity option of the LHC for composite Higgs models with heavy fermions. We also investigate the invariant mass distributions at NLO QCD. While they are sensitive to the Higgs non-linearities and hence anomalous couplings, the influence of the heavy fermions is much less pronounced

    Screened-interaction expansion for the Hubbard model and determination of the quantum Monte Carlo Fermi surface

    Full text link
    We develop a systematic self-consistent perturbative expansion for the self energy of Hubbard-like models. The interaction lines in the Feynman diagrams are dynamically screened by the charge fluctuations in the system. Although the formal expansion is exact-assuming that the model under the study is perturbative-only if diagrams to all orders are included, it is shown that for large-on-site-Coulomb-repulsion-U systems weak-coupling expansions to a few orders may already converge. We show that the screened interaction for the large-U system can be vanishingly small at a certain intermediate electron filling; and it is found that our approximation for the imaginary part of the one-particle self energy agrees well with the QMC results in the low energy scales at this particular filling. But, the usefulness of the approximation is hindered by the fact that it has the incorrect filling dependence when the filling deviates from this value. We also calculate the exact QMC Fermi surfaces for the two-dimensional (2-D) Hubbard model for several fillings. Our results near half filling show extreme violation of the concepts of the band theory; in fact, instead of growing, Fermi surface vanishes when doped toward the half-filled Mott-Hubbard insulator. Sufficiently away from half filling, noninteracting-like Fermi surfaces are recovered. These results combined with the Luttinger theorem might show that diagrammatic expansions for the nearly-half-filled Hubbard model are unlikely to be possible; however, the nonperturbative part of the solution seems to be less important as the filling gradually moves away from one half. Results for the 2-D one-band Hubbard model for several hole dopings are presented. Implications of this study for the high-temperature superconductors are also discussed.Comment: 11 pages, 12 eps figures embedded, REVTeX, submitted to Phys. Rev. B; (v2) minor revisions, scheduled for publication on November 1

    Light stop decays into Wb x ~ 10 near the kinematic threshold

    Get PDF
    We investigate the decays of the light stop in scenarios with the lightest neutralino x~10 being the lightest supersymmetric particle, including flavour-violating (FV) effects. We analyse the region where the three-body decay t~1->;Wb x ~10 is kinematically allowed and provide a proper description of the transition region between the three-body decay and the four-body decay t~1->;Wb x ~10bff\u27. The improved treatment has been implemented in the Fortran package SUSY-HIT and is used for the analysis of this region. A scan over the parameter range including all relevant experimental constraints reveals that the FV two-body decay into charm and x~10 can be as important as the three-, respectively, four-body decays if not dominant and therefore should be taken into account in order to complete the experimental searches for the light stop

    Electron-phonon vertex in the two-dimensional one-band Hubbard model

    Full text link
    Using quantum Monte Carlo techniques, we study the effects of electronic correlations on the effective electron-phonon (el-ph) coupling in a two-dimensional one-band Hubbard model. We consider a momentum-independent bare ionic el-ph coupling. In the weak- and intermediate-correlation regimes, we find that the on-site Coulomb interaction UU acts to effectively suppress the ionic el-ph coupling at all electron- and phonon- momenta. In this regime, our numerical simulations are in good agreement with the results of perturbation theory to order U2U^2. However, entering the strong-correlation regime, we find that the forward scattering process stops decreasing and begins to substantially increase as a function of UU, leading to an effective el-ph coupling which is peaked in the forward direction. Whereas at weak and intermediate Coulomb interactions, screening is the dominant correlation effect suppressing the el-ph coupling, at larger UU values irreducible vertex corrections become more important and give rise to this increase. These vertex corrections depend crucially on the renormalized electronic structure of the strongly correlated system.Comment: 5 pages, 4 eps-figures, minor change

    Nonlocal Excitations and 1/8 Singularity in Cuprates

    Full text link
    Momentum-dependent excitation spectra of the two-dimensional Hubbard model on the square lattice have been investigated at zero temperature on the basis of the full self-consistent projection operator method in order to clarify nonlocal effects of electron correlations on the spectra. It is found that intersite antiferromagnetic correlations cause shadow bands and enhance the Mott-Hubbard splittings near the half-filling. Furthermore nonlocal excitations are shown to move the critical doping concentration δh∗\delta^{\ast}_{h}, at which the singular quasiparticle peak is located just on the Fermi level, from δh∗=0.153\delta^{\ast}_{h}=0.153 (the single-site value) to δh∗=0.123\delta^{\ast}_{h}=0.123. The latter suggests the occurance of an instability such as the stripe at δh∗=1/8\delta^{\ast}_{h}=1/8.Comment: 4 pages, 5 figures; to be published in the Journal of Korean Physical Society (ICM12

    Kink Structure in the Quasiparticle Band of Doped Hubbard Systems

    Full text link
    By making use of the self-consistent projection operator method with high-momentum and high-energy resolutions, we find a kink structure in the quasiparticle excitation spectrum of the two-dimensional Hubbard model in the underdoped regime. The kink is caused by a mixing between the quasiparticle state and excitations with short-range antiferromagnetic order. We suggest that this might be the origin of the strong concentration dependence of the 'kink' found in La_{2-x}Sr_{x}CuO_{4} (x=0.03-0.07).Comment: 3 pages, 4 figures. to be published in J. Phys. Soc. Jpn., Vol. 74, No. 9, September 15, 200
    • …
    corecore