55 research outputs found

    Under the sea: How can we use heart rate and accelerometers to remotely assess fish welfare in salmon aquaculture?

    Get PDF
    Recent advances in bio-sensing technologies open for new possibilities to monitor and safeguard the welfare of fishes in aquaculture. Yet before taken into practice, the applicability of all novel biosensors must be validated, and the breadth of their potential uses must be investigated. Here, we investigated how ECG and accelerometryderived parameters measured using bio-loggers, such as heart rate, acceleration and variance of acceleration, relate to O2 consumption rate (MO2) and blood borne indicators of stress and tissue damage to determine how biologgers may be used to estimate stress and welfare. To do this, we instrumented 13 fish with a biologger and an intravascular catheter and subjected them to a swimming protocol followed by a stress protocol throughout which the physiological parameters were measured and analyzed a posteriori. Additionally, based on the empirical data obtained, we calculated the mathematical relationships between the bio-logger data and the other parameters and tested the relationship between the calculated parameters using the linear regression algorithms and the measured parameters. Our results show that acceleration is a good proxy for swimming activity as it is closely related to tail beat frequency. In addition, we show that heart rate, acceleration and variance of acceleration all can be used as predictors for metabolic rate. Accelerometry based data, especially variance of acceleration, significantly explain some of the variation in venous partial pressure of O2, blood lactate and plasma cortisol concentration. Variance of acceleration also significantly explains some of the variation in pH and mean corpuscular hemoglobin concentration. These relationships are explained by variance of acceleration being a good indicator of the onset of burst-swimming activity, which is often followed by acid-base imbalances and release of catecholamines. The results herein indicate that bio-logger data can be used to extrapolate a range of stress-related physiological events when these are accompanied by increases in activity and highlight the great potential of biosensors for monitoring fish welfare

    FiskvÀlfÀrd och hÄllbar matproduktion

    Get PDF

    Continuous gastric saline perfusion elicits cardiovascular responses in freshwater rainbow trout (Oncorhynchus mykiss)

    Get PDF
    When in seawater, rainbow trout (Oncorhynchus mykiss) drink to avoid dehydration and display stroke volume (SV) mediated elevations in cardiac output (CO) and an increased proportion of CO is diverted to the gastrointestinal tract as compared to when in freshwater. These cardiovascular alterations are associated with distinct reductions in systemic and gastrointestinal vascular resistance (R-Sys and R-GI, respectively). Although increased gastrointestinal blood flow (GBF) is likely essential for osmoregulation in seawater, the sensory functions and mechanisms driving the vascular resistance changes and other associated cardiovascular changes in euryhaline fishes remain poorly understood. Here, we examined whether internal gastrointestinal mechanisms responsive to osmotic changes mediate the cardiovascular changes typically observed in seawater, by comparing the cardiovascular responses of freshwater-acclimated rainbow trout receiving continuous (for 4 days) gastric perfusion with half-strength seawater (1/2 SW, similar to 17 ppt) to control fish (i.e., no perfusion). We show that perfusion with 1/2 SW causes significantly larger increases in CO, SV and GBF, as well as reductions in R-Sys and R-GI, compared with the control, whilst there were no significant differences in blood composition between treatments. Taken together, our data suggest that increased gastrointestinal luminal osmolality is sensed directly in the gut, and at least partly, mediates cardiovascular responses previously observed in SW acclimated rainbow trout. Even though a potential role of mechano-receptor stimulation from gastrointestinal volume loading in eliciting these cardiovascular responses cannot be excluded, our study indicates the presence of internal gastrointestinal milieu-sensing mechanisms that affect cardiovascular responses when environmental salinity changes

    Energetic savings and cardiovascular dynamics of a marine euryhaline fish (Myoxocephalus scorpius) in reduced salinity

    Get PDF
    Few studies have addressed how reduced water salinity affects cardiovascular and metabolic function in marine euryhaline fishes, despite its relevance for predicting impacts of natural salinity variations and ongoing climate change on marine fish populations. Here, shorthorn sculpin (Myoxocephalus scorpius) were subjected to different durations of reduced water salinity from 33 to 15 ppt. Routine metabolic rate decreased after short-term acclimation (4-9 days) to 15 ppt, which corresponded with similar reductions in cardiac output. Likewise, standard metabolic rate decreased after acute transition (3 h) from 33 to 15 ppt, suggesting a reduced energetic cost of osmoregulation at 15 ppt. Interestingly, gut blood flow remained unchanged across salinities, which contrasts with previous findings in freshwater euryhaline teleosts (e.g., rainbow trout) exposed to different salinities. Although plasma osmolality, [Na+], [Cl-] and [Ca2+] decreased in 15 ppt, there were no signs of cellular osmotic stress as plasma [K+], [hemoglobin] and hematocrit remained unchanged. Taken together, our data suggest that shorthorn sculpin are relatively weak plasma osmoregulators that apply a strategy whereby epithelial ion transport mechanisms are partially maintained across salinities, while plasma composition is allowed to fluctuate within certain ranges. This may have energetic benefits in environments where salinity naturally fluctuates, and could provide shorthorn sculpin with competitive advantages if salinity fluctuations intensify with climate change in the future

    Feasibility and potential for farming and conditioning of wild fish fed with by-catches in Sweden

    Get PDF
    Small-scale fisheries face problems with declining fish stocks in poor condition, increasing interactions with seals and cormorants and partly non-efficient distribution systems, resulting in low profitability. One potential method to increase the value of their catch is rear the fish in farms until fish reach a size that render a higher price. This may not only provide a higher value of each animal but also a steadier supply of fish to consumers and retailers. In addition, by-catch of unwanted species may be used as feed ingredient to the farmed fish. This will not only cut the costs for the feed but is also a more sustainable alternative as it will both make use of by-catches that otherwise is discarded, and recirculate nutrients on a regional scale instead of importing new nutrients. Farming of wild caught fish and shellfish (grow-out or capture-based aquaculture) constitute a large part of aquaculture on a global scale. Except for eel is this type of aquaculture still limited in Sweden and Europe, with relatively little development. Here we make an overview of species that could be interesting for farming of wild caught fish, and identify benefits and challenges. The species we find most suitable for further development are cod, perch, whitefish, pike and pikeperch for which we can identify evident benefits of farming. In common for all these species is the need for an efficient feed system to ensure early and rapid weight gain and minimizing initial mortality. We speculate that a feed based on insect larvae could be one way to improve the feeding system for several species of wild caught fish. However, there are ethical and welfare issues related to farming wild born fish. As wild caught fish are not domesticated for life in captivity they can suffer from distress and increased susceptibility and transmissions of disease. Safeguarding the health and welfare of fish in capture-based aquaculture is a key to making it economically feasible, as an increased value for the end-consumers is necessary to compensate the fishermen for the additional costs associated with farming of wild caught fish. In addition, removal of wild fish may also impede natural stock size and recruitment of the natural stocks. Although our aim is to develop a farming system where local by-catches is used as a feed ingredient, local eutrophication effects and water pollutions (feed and fish residues) can cause degradation of local water quality. In conclusion, we find potential for farming of wild caught fish with local-by-catches as a feed ingredient. To be economically feasible there is a need for developing feeding systems, investigate stress responses and ethical and sustainability aspects important for marketing of such products

    Increased reliance on coronary perfusion for cardiorespiratory performance in seawater-acclimated rainbow trout

    Get PDF
    Salmonid ventricles are composed of spongy and compact myocardium, the latter being perfused via a coronary circulation. Rainbow trout (Oncorhynchus mykiss) acclimated to sea water have higher proportions of compact myocardium and display stroke volume-mediated elevations in resting cardiac output relative to freshwater-acclimated trout, probably to meet the higher metabolic needs of osmoregulatory functions. Here, we tested the hypothesis that cardiorespiratory performance of rainbow trout in sea water is more dependent on coronary perfusion by assessing the effects of coronary ligation on cardiorespiratory function in resting and exhaustively exercised trout acclimated to fresh water or sea water. While ligation only had minor effects on resting cardiorespiratory function across salinities, cardiac function after chasing to exhaustion was impaired, presumably as a consequence of atrioventricular block. Ligation reduced maximum O2 consumption rate by 33% and 17% in fish acclimated to sea water and fresh water, respectively, which caused corresponding 41% and 17% reductions in aerobic scope. This was partly explained by different effects on cardiac performance, as maximum stroke volume was only significantly impaired by ligation in sea water, resulting in 38% lower maximum cardiac output in seawater compared with 28% in fresh water. The more pronounced effect on respiratory performance in sea water was presumably also explained by lower blood O2 carrying capacity, with ligated seawater-acclimated trout having 16% and 17% lower haemoglobin concentration and haematocrit, respectively, relative to ligated freshwater trout. In conclusion, we show that the coronary circulation allows seawater-acclimated trout to maintain aerobic scope at a level comparable to that in fresh water

    Under the sea: How can we use heart rate and accelerometers to remotely assess fish welfare in salmon aquaculture?

    Get PDF
    Recent advances in bio-sensing technologies open for new possibilities to monitor and safeguard the welfare of fishes in aquaculture. Yet before taken into practice, the applicability of all novel biosensors must be validated, and the breadth of their potential uses must be investigated. Here, we investigated how ECG and accelerometryderived parameters measured using bio-loggers, such as heart rate, acceleration and variance of acceleration, relate to O2 consumption rate (MO2) and blood borne indicators of stress and tissue damage to determine how biologgers may be used to estimate stress and welfare. To do this, we instrumented 13 fish with a biologger and an intravascular catheter and subjected them to a swimming protocol followed by a stress protocol throughout which the physiological parameters were measured and analyzed a posteriori. Additionally, based on the empirical data obtained, we calculated the mathematical relationships between the bio-logger data and the other parameters and tested the relationship between the calculated parameters using the linear regression algorithms and the measured parameters. Our results show that acceleration is a good proxy for swimming activity as it is closely related to tail beat frequency. In addition, we show that heart rate, acceleration and variance of acceleration all can be used as predictors for metabolic rate. Accelerometry based data, especially variance of acceleration, significantly explain some of the variation in venous partial pressure of O2, blood lactate and plasma cortisol concentration. Variance of acceleration also significantly explains some of the variation in pH and mean corpuscular hemoglobin concentration. These relationships are explained by variance of acceleration being a good indicator of the onset of burst-swimming activity, which is often followed by acid-base imbalances and release of catecholamines. The results herein indicate that bio-logger data can be used to extrapolate a range of stress-related physiological events when these are accompanied by increases in activity and highlight the great potential of biosensors for monitoring fish welfare. Biologger Acceleration Heart rate Stress MetabolismpublishedVersio

    Prevalence and severity of cardiac abnormalities and arteriosclerosis in farmed rainbow trout (Oncorhynchus mykiss)

    Get PDF
    Cardiovascular disease may pose a major threat to the health and welfare of farmed fish. By investigating a range of established cardiovascular disease indicators, we aimed to determine the prevalence, severity and consequences of this affliction in farmed rainbow trout (Oncorhynchus mykiss) from an open cage farm in the Baltic Sea, an open cage farm in a freshwater lake, and a land-based recirculating aquaculture system. We also aimed to identify environmental, anthropogenic and physiological factors contributing towards the development of the disease. The majority of trout possessed enlarged hearts with rounded ventricles (mean height:width ratios of 1.0-1.1 c.f. similar to 1.3 in wild fish) and a high degree of vessel misalignment (mean angles between the longitudinal ventricular axis and the axis of the bulbus arteriosus of 28-31 degrees c.f. similar to 23 degrees in wild fish). The prevalence and severity of coronary arteriosclerosis was also high, as 92-100% of fish from the different aquaculture facilities exhibited coronary lesions. Mean lesion incidence and severity indices were 67-95% and 3.1-3.9, respectively, which resulted in mean coronary arterial blockages of 19-32%. To evaluate the functional significance of these findings, we modelled the effects of arterial blockages on coronary blood flow and experimentally tested the effects of coronary occlusion in a sub-sample of fish. The observed coronary blockages were estimated to reduce coronary blood flow by 34-54% while experimental coronary occlusion adversely affected the electrocardiogram of trout. Across a range of environmental (water current, predation), anthropogenic (boat traffic intensity, hatchery of origin, brand of feed pellets) and physiological factors (condition factor, haematological and plasma indices), the hatchery of origin was the main factor contributing towards the observed variation in the development of cardiovascular disease. Therefore, further research on the effects of selective breeding programs and rearing strategies on the development of cardiovascular disease is needed to improve the welfare and health of farmed fish

    Socially induced stress and behavioural inhibition in response to angling exposure in rainbow trout

    Get PDF
    It is well known that fish can learn to avoid angling gear after experiencing a catch‐and‐release event, that is, after a private hooking experience. However, the possible importance of social information cues and their influence on an individual's vulnerability to angling remains largely unexplored, that is, social experience of a conspecific capture. The effects of private and social experience of hooking on the stress response of fish and subsequent catch rates were examined. Hatchery‐reared rainbow trout, Oncorhynchus mykiss (Walbaum), were implanted with heart rate loggers and experimentally subjected to private or social experience of hooking. Private and social experience of angling induced an increased heart rate in fish compared with naïve control fish. While private experience of hooking explained most of the reduced vulnerability to capture, no clear evidence was found that social experience of hooking affected angling vulnerability in fish that had never been hooked before. While both private and social experiences of angling constitute significant physiological stressors for rainbow trout, only the private experience reduces an individual's vulnerability to angling and in turn affecting population‐level catchability
    • 

    corecore