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Summary statement 

Here we disclose the first demonstration of corticosteroid-induced heart disease in fish and show that 

the molecular basis of heart disease is conserved from fish to mammals. 

 

Abstract: 

Stress and elevated cortisol levels are associated with pathological heart growth and cardiovascular 

disease in humans and other mammals. We recently established a link between heritable variation in 

post-stress cortisol production and cardiac growth also in salmonid fish. A conserved stimulatory 

effect of the otherwise catabolic steroid hormone cortisol is likely implied, but has to date not been 

established experimentally. Furthermore, whereas cardiac growth is associated with failure of the 

mammalian heart, pathological cardiac hypertrophy has not previously been described in fish. Here we 

show that rainbow trout (Oncorhynchus mykiss) treated with cortisol in the food for 45 days have 

enlarged hearts with lower maximum stroke volume and cardiac output. In accordance with impaired 

cardiac performance, overall circulatory oxygen transporting capacity was diminished as indicated by 

reduced aerobic swimming performance. In contrast to the well-known adaptive/physiological heart 

growth observed in fish, cortisol-induced growth is maladaptive. Furthermore, the observed heart 

growth was associated with up-regulated signature genes of mammalian cardiac pathology, suggesting 

that signaling pathways mediating cortisol-induced cardiac remodeling in fish are conserved from fish 

to mammals. Altogether, we show that excessive cortisol can induce pathological cardiac remodeling. 

This is the first study to report and integrate the etiology, physiology and molecular biology of 

cortisol-induced pathological remodeling in fish.

Jo
ur

na
l o

f E
xp

er
im

en
ta

l B
io

lo
gy

 •
 A

dv
an

ce
 a

rt
ic

le



 

Introduction 

Cardiovascular disease is the leading cause of death in the western world. In addition to classical risk 

factors (e.g. hypertension and elevated levels of blood cholesterol) epidemiological evidence and 

common folklore wisdom suggest an association between stress and coronary heart disease (CHD) risk 

in humans (Rosengren et al., 1991; Iso et al., 2002; Rosengren et al., 2004). It is also well known that 

individual variation in physiology and behavior (coping styles, or “personalities”) predicts disease 

outcome in both animal models and humans (Denollet et al., 1996). Mechanisms underlying stress-

induced cardiac pathology risk remain largely unknown; however, increased levels of the steroid 

hormone cortisol are believed to be important. For example, high cortisol responsiveness to stress is 

associated with a four-fold increased risk of cardiovascular morbidity and mortality in humans 

(Denollet, 2000) and clinical use of synthetic cortisol (i.e. cortisone, hydrocortisone, dexamethasone 

etc.) is associated with abnormal heart growth and other cardiovascular diseases (Souverein et al., 

2004). In mammalian experimental models, glucocorticoids like cortisol directly induce 

cardiomyocyte hypertrophy in vitro (Whitehurst et al., 1999; Ren et al., 2012)  and in vivo (Clark et 

al., 1982; de Vries et al., 2002; Jensen et al., 2002; Lumbers et al., 2005), indicating a direct role of 

cortisol in heart remodeling, growth and disease.  

Stress - and cortisol-induced cardiac hypertrophy may not be limited to mammals. Cardiac 

remodeling and deformities are commonly reported in farmed fish (Poppe et al., 2007), but a link 

between stress and development of such diseases has never been established. As in humans, the main 

glucocorticoid and stress hormone in salmonid fish is cortisol. We recently established a link between 

cortisol responsiveness to stress and cardiac remodeling in rainbow trout (Oncorhynchus mykiss) high 

(HR) and low (LR) responsive strains and wild-type brown trout (Salmo trutta) (Johansen et al., 2011). 

High post-stress cortisol production is also associated with a range of behavioral and cognitive traits 

indicating a reactive coping style (Øverli et al., 2005; Øverli et al., 2007; Sørensen et al., 2013), 

rendering the salmonids a productive model to study proximate physiological mechanisms underlying 

consistent trait associations (Khan et al., 2016).  Regarding cardiac function, individuals responding to 

stress with high cortisol levels (HR fish) have notably larger ventricles compared to individuals with a 

low cortisol response (LR fish).  

Combined, previous findings indicate a common mechanism behind cortisol associated heart 

growth in fish and mammals, suggesting either parallel evolution or conservation of important 

regulatory mechanisms. Of note, although cardiac hypertrophy is associated with failure of the 

mammalian heart (Lloyd-Jones et al., 2002), the concept of pathological cardiac hypertrophy has not 

been established in fish. In fact, cardiac growth is a routinely occurring phenomenon in many fishes 

including salmonids; and is generally considered an adaptive response that enhances myocardial 

mechanical performance and cardiac pumping capacity (Graham and Farrell, 1989) during e.g. 

seasonal cold acclimatization (Klaiman et al., 2011) and sexual maturation (Franklin and Davie, 

1992). Further, although an association between cortisol exposure and cardiac remodeling has been 
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observed in fish and mammals, the direct effect of exogenous cortisol administration on cardiac 

morphology and function has, to our knowledge, not been investigated in fish.  

Here, we hypothesized that chronic exposure to high cortisol directly induces cardiac 

hypertrophy and impairs cardiac performance in rainbow trout. Further, we hypothesized that 

intracellular signaling pathways mediating cortisol-induced cardiac remodeling in fish are similar to 

those involved in pathological cardiac hypertrophy in mammals. 

 

Materials and methods 

Research animals and animal housing 

For 45 and 90 days of cortisol treatment juvenile rainbow trout (150 ± 29 g, mean ± s.d.), obtained 

from Store Restrup Fiskeri, Nibe, Denmark were used. Experiments were conducted at the Danish 

Technical University, Institute of Aquatic Resources, Hirtshals, Denmark. Prior to cortisol treatment, 

fish were kept in rearing tanks (1000 L) supplied with aerated tap water at 17 °C. Lighting was kept at 

a 14.5/9.5 h light/dark cycle. The fish were subsequently moved and randomly distributed to six 700 L 

cylinder tanks (45 fish per tank) and allowed to acclimatize for 5 days before the onset of cortisol 

treatment. During this period and throughout the experiment, the tanks were supplied with aerated 

recirculating water at 19 °C. Lighting was kept at a 14.5/9.5 h light/dark cycle. Fish were divided into 

four treatment groups: One tank received control feed for 45 days (n=45), one tank received control 

feed for 90 days (n=45), two duplicate tanks received cortisol-treated feed for 45 days (n=90) and two 

duplicate tanks received cortisol-treated feed for 90 days (n=90). Ethical approvals for the experiments 

were given by the Norwegian and Danish Animal Research Authorities with license numbers 

2012/33240 and 2014-15-2934-01041, respectively. 

For in vivo assessment of effects of cortisol-induced remodeling on cardiovascular 

performance, juvenile rainbow trout (420 ± 23 g, mean ± s.d. g), obtained from Antens laxodling AB, 

Alingsås, Sweden, were used. Experiments were conducted at the fish holding facilities at the 

Department of Biological and Environmental Sciences, University of Gothenburg, Sweden. Fish were 

kept in tanks supplied with partly recirculating UV-treated and bio-filtered fresh water at 8 °C prior to 

experimentation. Lighting was kept at a 12/12 h light/dark cycle. The experiments were covered by 

ethical permit 65-2012 with amendment 169-2013 from the local ethical committee in Gothenburg. 

For all experiments animals were randomly assigned to either a control or treatment group. 

Preparation of cortisol feed 

Cortisol treatment refers to oral administration of prefabricated food pellets coated with 

hydrocortisone. More precisely, this diet was prepared by dissolving 500 mg (dose modified from 

Sørensen et al. (2011) cortisol (hydrocortisone powder, Sigma-Aldrich, St. Louis, MO, USA) in 15 g 

rapeseed oil (First Price,  SuperGros A/S, Denmark) per kg pellets (EFICO Enviro 920, 3 mm or 6 mm 

(depending on fish size) Biomar, Brande, Denmark). This was mixed in a container rebuilt from an 

850 W electric cement mixer (174 L) and thorough mixing of the content was ensured by rotation of 
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this mixer. The container was connected to a vacuum pump and in order for the cortisol to be absorbed 

into the pellets, a negative pressure of 0.9 Bar was applied before air was slowly let back into the 

container. Control feed was prepared in the same way but with pure rapeseed oil. 

In vivo cortisol treatment 

During acclimation, all fish were fed 0.8 % of their total body mass each day with commercial pellets 

(EFICO Enviro 920, 3.0 mm, Biomar, Brande, Denmark). At the onset of the experiment the feed was 

exchanged with pellets of the same brand and size but that had been coated with either rapeseed oil 

alone (control feed) or rapeseed oil and hydrocortisone (Sigma-Aldrich, St. Louis, MO, USA) and the 

fish were fed 0.8 % of their body mass daily, corresponding to a dose of 4 µg cortisol/g BW. 

Following 45 and 90 days of cortisol treatment cortisol treated fish appeared as healthy as control fish 

with no internal or external symptoms of pathogen infection. 

Physiological measurements and sampling 

For blood sampling, fish were lightly anaesthetized with 1 g l-1 MS-222 before a blood sample was 

collected from the caudal vein. The blood samples were centrifuged for 5 min at 4 °C, 8000 g and 

plasma was frozen and stored at -20 °C for later analysis of cortisol levels. Hearts from all 

experimental fish were surgically excised and the bulbus and atrium removed. The ventricles were 

blotted dry of blood and weighed on a precision weight scale and cardiosomatic index (CSI=ventricle 

wet weight/body weight), was calculated. Images of the ventricles were taken using a Canon EOS350 

digital camera (Canon, Tokyo, Japan) and processed in Adobe Photoshop CS3 (Adobe Systems Inc., 

San Jose, CA, USA).Ventricles were either stored on RNAlater® solution (Ambion, Austin, TX, 

USA) for 24 h at room temperature before they were stored at -20 °C for later qPCR mRNA analysis, 

put on freshly prepared 4 % Paraformaldehyde for MRI analysis or dried at 70 °C for 24 h for analysis 

of % water content.  

Plasma cortisol analysis  

Plasma cortisol was measured in a random selection of individuals treated with cortisol for 15 and 45 

days. Plasma cortisol was analyzed using a radioimmunoassay (RIA) based on the assay by Pottinger 

and Carrick (2001). In short, steroids were extracted with ethyl acetate (Merck, 1:5 plasma, ethyl 

acetate) prior to the RIA. 5-150 μl of extract was transferred to 1.5 ml eppendorf tubes. 50 μl aliquots 

containing approximately 16 000 cpm of [1,2,6,7-3H] cortisol (Amersham Pharmacia Biotech, Little 

Chalfront, UK, 60 Ci mmol-1) was added to all samples. The ethyl acetate was evaporated in an 

exsiccator coupled to a water-jet pump and donkey anti-cortisol antibody (AbD Serotec, Dusseldorf, 

Germany) was added. After 18 h incubation at 4 °C, dextran-coated charcoal in PBS (1.0 % activated 

charcoal, Sigma; 0.2 % dextran, Sigma) was added. Supernatant from each tube was transferred to 

scintillation vials containing 4 ml scintillation fluid (Ultima Gold, Perkin Elmer, Waltham, MA, 

USA), and counted on a Packard Tri-Carb A1900 TR liquid scintillation analyzer (Packard Instrument, 

Meriden, CT, USA). A 3-parameter hyperbolic function was fitted to the plot of the percentage of 

3H-cortisol bound against a standard curve using SigmaPlot 11 (SPSS Science, Systat Software Inc., 
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San Jose, CA, USA). The equation from this function was used to estimate the cortisol concentration 

in the unknown samples. The lower and upper detection limits of the assay were 0.19 and 655 ng/ml, 

respectively. For individuals where the plasma cortisol levels were below this limit, the level was set 

to 0.19 ng/ml.  

Magnetic resonance imaging (MRI) of fixed ventricles 

Ventricles fixed on 4 % PFA were thoroughly rinsed with saline water (0.4 %) before mounted with 

cotton and soaked in MRI-compatible perfluoropolyether oil (Fomblin, Sigma-Aldrich, St. Louis, MO, 

USA) in a 15 mm glass tube. “MRI experiments were performed on a pre-clinical 9.4 T MRI system 

(Agilent Technologies, Inc., USA) equipped with a high-performance gradient coil (inner diameter 

60 mm, max strength 1000 mT/m) and a quadrature RF volume coil ( 19 mm ID, Rapid Biomedical). 

High resolution images were acquired by 3D spoiled gradient echo. Field of view ranged from 12.8 × 

12.8 × 12.8 mm to 16 × 16 × 16 mm depending on the size of specimen. Other typical parameters were 

matrix 1024 ×512×512, repetition time TR 45 ms, echo time TE 10 ms, flip angle 450, 5 averages, 

acquisition time 16 h 23 min. Fiji image processing software (released under the General Public 

License) was employed to view the images and measure area of compact and non-compact 

myocardium. Area of compact myocardium was calculated by subtracting non-compact area (area 

inside of compact layer in the ventricle) form total area and non-compact area was calculated by 

subtracting compact area from non-compact area. Area of compact myocardium was then divided by 

the area of non-compact myocardium to get the ratio of compact to non-compact area. 

RNA extraction and qPCR analysis 

The hearts, stored and frozen in RNAlater®, were thawed and refrozen in liquid nitrogen before they 

were freeze-fractured in a BioPulverizer (Biospec Products, Inc., Bartlesville, OK, USA). The 

pulverized hearts were put into15 ml plastic tubes and RNA was extracted using TRIzol® reagent 

(Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s protocol. The quality and quantity 

of the RNA was assessed using a 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA) and a 

NanoDrop® ND-1000 UV-Vis Spectrophotometer (NanoDrop Technologies, Rockland, DE, USA), 

respectively. RNA quality was determined from RNA integrity numbers (RINs) calculated by the 2100 

Bioanalyzer (range: 1–10). The RIN for the tissue samples ranged from 8.4 to 10.0 with an average of 

9.5, confirming excellent RNA quality. First-strand cDNA was synthesized from total RNA treated 

with 2 ng DNase I (DNA-freeTM Kit, Ambion Applied Biosystems) using Superscript III reverse 

transcriptase (Invitrogen) with oligo dT12–18 primers synthesized by Invitrogen. Gene specific primer 

sequences for rainbow trout β-actin, proliferating cell nuclear antigen (PCNA), ventricular myosin 

heavy chain (VMHC), slow myosin light chain 2 (SMLC2), muscle LIM protein (MLP), regulator of 

calcineurin 1 (RCAN1), A-type natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) were 

designed and published previously (Johansen et al., 2011). The housekeeping gene β-actin was used as 

reference gene. Real time PCRs were carried out using a Roche LC480 Light cycler (Roche 

Diagnostics, Penzberg, Germany). Reaction volumes were 10 µl and included Light cycler® 480 
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SYBR Green I Master (Roche diagnostics GmbH, Mannheim, Germany), primers (5 µM) and cDNA 

(3 µM). Cycling conditions were as follows: 10 min at 95 °C, 42 cycles of 10 sec at 95 °C, 10 sec at 

60 °C and 10 sec at 72 °C followed by melt curve analysis. All reactions were run in duplicates and 

controls without DNA template were included to verify the absence of cDNA contamination.  

Relative gene expression data was calculated from real-time PCR raw data using the formula: 

ICECp/GOIECp= Expression of GOI in ratio to IC  

where IC is internal control (β-actin), GOI is gene of interest, E is priming efficiency, and Cp is 

crossing point. E values were calculated for each real-time RT PCR reaction using LinRegPCR 

software (version 11.30.0) (Ruijter et al., 2009). 

Surgical instrumentation for in vivo cardiovascular measurements 

Individual fish were netted from the holding tanks and anaesthetized in aerated water containing 

200 mg l-1 of tricaine methane sulphonate (MS-222; Sigma-Aldrich, Sweden) buffered with NaHCO3 

(400 mg l-1). The fish were weighed and placed on a surgery table covered with wet rubber foam. The 

gills were continuously irrigated via the mouth with aerated water (~10 °C) containing a lower dose of 

NaHCO3 buffered MS-222 (100 mg l-1 and 200 mg l-1, respectively). The right operculum was 

carefully retracted and the ventral aorta was surgically exposed taking care not to damage the 

pericardium and adjacent small blood vessels and nerves. A 4-0 silk suture was placed under the 

vessel, which was carefully lifted and a 2.5PSL or 2.5PSB Transonic perivascular blood flow probe 

(Transonic Systems Inc, Ithaca, New York, USA), factory-calibrated to 10 °C, was placed around the 

aorta to measure cardiac output (CO). The lead from the flow probe was sutured to the skin with 

several 2-0 silk sutures close to the opercular cavity. The dorsal aorta was then cannulated via the roof 

of the buccal cavity with a PE-50 catheter using a sharpened steel wire as guide (Axelsson and 

Fritsche, 1994). The catheter was rinsed and filled with heparinized (100 IU ml-1) saline (0.9 %) and 

closed with a pin. The catheter and the flow probe lead were collectively sutured to the skin at the 

back of the fish with a single 2-0 silk suture. Following surgery, fish were revived in fresh water in 

their respective holding tank and placed individually in a plastic tube floating in the tank. They were 

left to recover from surgery for approximately 24 h before experimentation commenced.  

Experimental protocol for in vivo cardiovascular measurements 

The fish was removed from the holding tube and transferred using a water-filled plastic bag to a round 

tank (diameter: 655 mm, volume: 75 l) supplied with through flowing water (8 °C). To trigger a 

maximal cardiovascular response, fish were subjected to a manual chase protocol where vigorous 

escape behaviours were encouraged by repeatedly touching the body of the fish for 10 min, making the 

fish completely unresponsive to physical stimuli at the end of the protocol. The fish was then rapidly 

transferred to an opaque holding chamber (length: 54, width: 13 and depth: 18 cm) with through 

flowing water from the same water system and covered to avoid external visual stimuli. A blood 
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sample (0.5 ml) was quickly withdrawn into a heparinized syringe from the dorsal aortic cannula to 

determine maximal haematological status after stress and cardiovascular variables (maximal) were 

then recorded for 2-3 h after the chase protocol. The maximum cardiovascular response was defined as 

the period when cardiac output peaked after the exhaustive chase protocol. Typically, the maximum 

response occurred within 15 min and reported data represent the means from a 2 min period taken 

during the maximum response. 

 The following day, i.e. when the fish had recovered from the preceding exercise protocol for 

~24 h, basal cardiovascular variables were recorded for several hours. When low and stable 

cardiovascular variables had been confirmed another blood sample (0.5 ml) was withdrawn into a 

heparinized syringe from the catheter to determine basal haematological status. Cardiac autonomic 

tones were then determined using the pharmacological protocol of Altimiras et al. (1997). Briefly, 

atropine sulphate [1.2 mg kg body mass (Mb)-1] was first injected via the catheter to block muscarinic 

receptors and cardiovascular variables were allowed to stabilize for 30-60 min before a recording was 

made. Finally, (±) propranolol hydrochloride (3 mg kg Mb
-1) was injected to block β-adrenergic 

receptors, and cardiovascular variables were allowed to stabilize for at least 30 min before a final 

recording was made. 

Acquisition of cardiovascular variables and analytical procedures  

The dorsal aortic catheter was connected to a DPT-6100 blood pressure transducer (pvb 

Medizintechnik, Kirchseeon, Germany) that was calibrated against a static column of water and 

referenced to the fluid in the holding tubes. A 4ChAmp pre-amplifier (Somedic AB, Hörby, Sweden) 

was used to amplify the signal from the transducer. The blood flow probe was connected to a three 

channel 400 series Transonic blood flow meter (Transonic Systems Inc, Ithaca, New York, USA). 

Data was sampled at 100 Hz using a Power Lab unit (ADInstruments Pty Ltd, Castle Hill, Australia) 

connected to a laptop computer running LabChart Pro software (version 7.3; ADInstruments Pty Ltd, 

Castle Hill, Australia). From the pulsatile blood pressure signal mean dorsal aortic blood pressure 

(PDA), diastolic pressure (PDA DIA), systolic pressure (PDA SYS), pulse pressure (PDA PULSE) and heart rate 

(fH) were calculated using the blood pressure module in the LabChart Pro software. Cardiac output 

(CO) was calculated from the phasic blood flow signal and based on these primary variables cardiac 

stroke volume (VS) was calculated as VS=Q/fH and systemic vascular resistance (RSYS) was calculated 

as RSYS = PDA/CO assuming that central venous blood pressure  is close to zero and that changes in 

venous pressure are negligible in these calculations (Sandblom and Axelsson, 2007).   

Blood haematocrit (Hct) was determined in duplicates using micro capillary tubes spun in a 

hematocrit centrifuge. Blood hemoglobin concentration (Hb) was determined using a Hemocue Hb 

201+ unit (Hemocue® AB, Ängelholm, Sweden) with values corrected for salmonid fish blood 

according to Clark et al. (2008).  
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Experimental protocol for assessing swimming performance 

Critical swimming speeds were determined using a swimming respirometer as described previously 

(Skov et al., 2011). The swimming trials were were conducted at the Danish Technical University, 

Institute of Aquatic Resources, Hirtshals, Denmark and the temperature during trials were 19 C. 

Statistical analyses 

Data are expressed as group mean ± s.e.m. Differences between cortisol-treated and respective 

treatment controls were tested by one-way ANOVA (for differences in plasma cortisol levels), two-

way ANOVA (for effects of treatment and gender on CSI) or unpaired t-tests with welch`s correction 

for unequal variance when relevant.  Average CSI, relative compact to non-compact tissue and mRNA 

levels of control fish was normalized to 1, and data are presented as normalized values to treatment 

control average (fold change), whereas other data are presented as absolute values. P-values <0.05 

were considered statistically significant. For all experiments, a sample size ≥ 8 was used to ensure 

satisfactory statistical power. All statistical analyses were performed in GraphPad Prism 6 (GraphPad 

Software, San Diego, CA, USA). 

 

Results 

Chronic cortisol exposure induces cardiac hypertrophy in rainbow trout  

To test whether chronic cortisol exposure directly induces cardiac remodeling in salmonid fish, 

rainbow trout were fed cortisol-containing feed for 45 days. Increased plasma cortisol levels were 

confirmed after 15 and 45 days of cortisol treatment by one-way ANOVA (p<0.01). Plasma cortisol 

concentration after 15 days were 27.13 ± 8.2 µg/l vs. >0.19 ± 0.0 µg/l (below detection limit) in 

cortisol treated (n = 7) and controls (n = 5) respectively. After 45 days, plasma cortisol concentration 

equaled 20.38 ± s.e.m. µg/l vs 8.57 ± 1.99 µg/l in cortisol treated (n = 14) and controls (n = 14) 

respectively.   

Consistent with our hypothesis, 45 days of cortisol treatment resulted in a robust 34 % 

increase in CSI compared to controls (F(1,52)=80.93), p<0.001, Fig. IB). Mean CSI ± s.e.m. was 

0.085 ± 0.002 for controls and 0.11 ± 0.002 for cortisol treated fish. Since no gender differences were 

identified by the Two-way ANOVA (F(1,52)=0.09, p=0.77, Fig. S1), we did not separate between sexes 

in subsequent analyses.  

While visual inspection of ventricles gave a clear indication that these were larger in cortisol treated 

fish (illustrated in Fig. 1A), we also compared absolute ventricular weights and body weights in the 

two treatment groups following 45 days of treatment to exclude that the elevated CSI was attributed to 

reduced body weight. Indeed, absolute ventricular weights of cortisol-treated fish (0.22 ± 0.01 g) were 

higher than in controls (0.20 ± 0.01 g; p<0.05, Fig. 1C), despite absolute body weights being lower in 

the cortisol treated fish (198.1 ± 6.2 versus 238.4 ± 10.5 g, p<0.01, Fig. 1D). Thus, while cortisol 

induced substantial cardiac growth, overall somatic growth was stunted by the cortisol treatment. 
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The salmonid heart consists of two separate layers of myocardium, i.e. spongious and compact 

myocardium. The inner spongious myocardium is supplied with blood from the venous circulation, 

while the outer compact myocardium resembles the mammalian myocardium and is supplied with 

blood from coronary arteries (Pieperhoff et al., 2009). The compact myocardium has a greater force-

generating capacity than the spongious myocardium. We therefore assessed the relative proportion of 

compact to non-compact volume in the two treatment groups by Magnetic resonance imaging (MRI) 

of the ventricles (see Fig. 1E). Interestingly, cortisol-treated fish had a higher proportion of compact to 

non-compact myocardial volume compared to controls (p<0.05, Fig. 1F), indicating that the cortisol-

induced cardiac growth is primarily due to growth of the compact myocardium. There was no 

significant difference in myocardial water content between controls and cortisol-treated fish, 

consistent with the increase in CSIs not resulting from myocardial tissue edema (Fig. 1G).   

  To indicate if the observed heart growth was due to hypertrophy or hyperplasia (i.e. cell 

proliferation) cardiac mRNA levels of the cell proliferation marker PCNA were measured. PCNA 

levels were not significantly increased by the cortisol treatment suggesting that cortisol-induced heart 

growth was driven mainly by hypertrophy (Fig. 1H).  

Hypertrophic remodeling is associated with increased expression signature molecules of cardiac 

pathology  

In mammals, including humans, pathological stimuli induce hypertrophic growth and remodeling of 

the heart characterized by up-regulation of specific molecular markers. We investigated the expression 

levels of SMLC2, VMHC, MLP, RCAN1, ANP and BNP in ventricles of rainbow trout treated with 

cortisol for 45 days. SMLC2 mRNA levels were doubled (p<0.05, Fig. 2A) in cortisol-treated fish 

whereas a trend towards increased VHHC was observed (p=0.14, Fig. 2B).  

The mammalian stress-sensor muscle LIM protein (MLP) was similarly upregulated (p<0.05, 

Fig. 2C) by the cortisol-treatment. MLP is necessary for stress-induced, pro-hypertrophic nuclear 

factor of activated T-cell (NFAT) signaling in mammals (Heineke et al., 2003). Calcineurin–NFAT 

signaling is a major pathway involved in mammalian pathological hypertrophy and remodeling and we 

assessed its activation by measuring mRNA levels of a direct downstream target gene of NFAT, 

RCAN1. Interestingly, RCAN1 mRNA levels were 102 % higher) than in respective controls 

following cortisol treatment (p<0.05, Fig. 2D). This indicates increased activation of pro-hypertrophic 

NFAT-signaling in rainbow trout hearts exposed to chronically elevated cortisol levels.  

 Natriuretic peptides are well-known signature molecules of heart failure progression in 

mammalian cardiac pathology (Lerman et al., 1993; Maisel et al., 2002). In line with a pathological 

transcriptional program profile of cardiac remodeling in cortisol treated rainbow trout, mRNA levels 

of A-type natriuretic peptide (ANP) was upregulated (Fig. 2E). mRNA levels of B-type natriuretic 

peptide (BNP) were not significantly changed (Fig. 2F).  
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Chronic cortisol exposure impairs cardiovascular function and aerobic swimming performance 

in rainbow trout 

Upregulation of signature molecules of cardiac pathology, indicate that cortisol-induced heart growth 

is not functionally adaptive. To test this, cardiovascular scopes (i.e. the difference between maximum 

and resting values) were assessed in vivo in a separate cohort of rainbow trout treated with cortisol for 

45 days. To trigger a maximal cardiovascular response, fish were subjected to a period of exhaustive 

exercise. Maximum cardiovascular performance was assessed when cardiac output (CO) was maximal 

immediately after the exhaustive exercise. Resting cardiovascular values were then assessed following 

a 24 h recovery period.  

Despite having larger ventricles (mean CSI ± s.e.m. was 0.12 ± 0.009 vs. 0.085 ± 0.003 in 

cortisol treated (n=13) and control (n=20) fish, p<0.001) with more compact myocardium, maximum 

CO (p<0.05) was lower in cortisol-treated fish. Resting CO was not significantly changed but CO 

scope (p<0.05) was also lower in the cortisol group (Fig. 3A). Similarly, maximum but not resting 

stroke volume (VS) were lower in cortisol treated fish, and there was a clear trend (p=0.55) for a 

reduced VS scope (Fig. 3B). There was no significant difference in maximum heart rate (fH) between 

treatment groups, but resting fH was higher in cortisol-treated fish (p<0.05, Fig. 3C), which meant that 

the fH scope was reduced (p<0.05) in this group (Fig. 3C).  

The observed increase in resting heart rate could be caused by either altered cholinergic or 

adrenergic autonomic nervous input to the heart, or possibly by a cortisol-induced resetting of the 

cardiac pacemaker (i.e. the spontaneous intrinsic heart rate). Pharmacological agents were used to 

block muscarinic and β-adrenergic receptors to evaluate cholinergic and adrenergic tones and intrinsic 

heart rate (fH intr) following complete autonomic blockade (Altimiras et al., 1997). Indeed, cholinergic 

tone was decreased in cortisol-treated fish (Fig. 4A), whereas adrenergic tone and fH intr was not 

significantly altered (Fig. 4B). Thus, increased resting fH in cortisol-treated fish originated from 

decreased cholinergic inhibition.  

It is well known that factors such as blood viscosity and vascular resistance affect the 

workload of the hart. Elevated cardiac workload could possibly mediate the cardiac enlargement 

observed following cortisol treatment. Therefore, blood hematological variables such as hematocrit 

(Hct) and hemoglobin (Hb) content as well as hemodynamical variables such as systemic blood 

pressure and vascular resistance (RSYS) were investigated. Neither resting (Fig. 4C-D) nor maximum 

(Fig. 4E-F) Hct and Hb levels differed between control and cortisol treated fish (Fig. 4C-F) indicating 

that blood viscosity was similar in the two groups.   

Neither resting nor maximum systolic, diastolic or mean dorsal aortic blood pressures differed 

significantly between treatment groups (Fig. S2), but maximum RSYS was higher in cortisol treated fish 

(Fig. 4H). Resting RSYS was similar in both groups (Fig. 4G). 

Since cardiovascular oxygen transporting capacity is a strong determinant of maximum 

aerobic swimming capacity in fish (Claireaux et al., 2005), we also investigated if the impaired cardiac 
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pumping capacity observed affected swimming performance. This was tested in a separate cohort of 

fish treated with cortisol for 90 days (mean CSI ± s.e.m. was 0.0782 ± 0.003 vs. 0.105 ± 0.003 in 

control (n=6) and cortisol treated (n=10) fish, p<0.0001). Indeed, maximum swimming performance 

(Ucrit) was reduced in the cortisol-treated fish  indicating that impaired cardiac function translates to a 

reduced overall physical performance (Fig 4I). 

 

Discussion 

In the present work, we showed that exogenous cortisol administration in rainbow trout induced 

substantial ventricular growth, likely through hypertrophy of the compact myocardium. These larger 

hearts generated lower maximum cardiac output (CO) and stroke volume (VS) with reduced CO scope. 

At the molecular level, cortisol–induced hypertrophic remodeling was associated with up-regulated 

signature genes of mammalian pathological hypertrophy, indicating that intracellular signaling 

pathways mediating cortisol-induced cardiac remodeling in fish are similar to those involved in 

pathological cardiac hypertrophy in mammals. Moreover, the observed cardiovascular changes were 

linked to reduced aerobic swimming capacity. Combined, our results are consistent with the 

hypothesis that elevated cortisol causes non-adaptive pathological cardiac hypertrophy, remodeling 

and dysfunction in rainbow trout. 

The current findings are in line with our previous finding that endogenous stress-induced 

cortisol production correlates with heart size and remodeling in rainbow trout (Johansen et al., 2011). 

Our previous investigations were performed on 40 months old (sexually mature) adults that had spent 

their entire lives under rearing conditions. It is therefore reasonable to assume that stress-induced 

cortisol production is sufficient to induce myocardial growth and remodeling in fish. Chronic stress 

has been shown to induce increases in plasma cortisol levels, comparable to those seen in the current 

study in both magnitude and duration (Barton and Iwama, 1991; Wendelaar Bonga, 1997). Thus, we 

believe that the current experimental protocol can be extrapolated to for example intensive aquaculture 

conditions. 

To our knowledge, only one previous study has investigated the effect of chronic cortisol 

administration on cardiac performance in fish. In line with our findings, Nesan and Vijayan (2012) 

reported that embryo exposure to chronically increased cortisol levels leads to cardiac performance 

dysfunction in Zebrafish (Danio rerio). In mammals, excessive glucocorticoids induce cardiomyocyte 

hypertrophy both in vitro (Ren et al., 2012) and in vivo (de Vries et al., 2002; Ahmed, 2013). Further, 

glucocorticoid-induced cardiac hypertrophy in rat myocytes and myocardium is associated with an 

increase in hypertrophy markers such as ANP and SMLC2 (De et al., 2011; Ren et al., 2012).  

In accordance with this, we found a consistent gene expression up-regulation of signature 

molecules of mammalian hypertrophy (i.e. ANP, SMLC2, MLP and RCAN1) in cortisol-treated 

rainbow trout ventricles. Several of these hypertrophy markers serve as specific molecular markers of 

pathological hypertrophy in humans. For example, ANP and SMLC2 are part of the fetal gene 
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program, which is reinitiated during pathological cardiac hypertrophy and remodeling. Both genes are 

upregulated in pressure overload-induced hypertrophy in rats (Schiaffino et al., 1989) and human 

cardiac hypertrophy (Swynghedauw, 1999). Further, the cardiac stress sensor MLP is upregulated in 

several models of heart disease in rodents (Boateng et al., 2007) and necessary for stress-induced 

NFAT signaling (Heineke et al., 2003). 

 In mammals, extensive evidence exists showing that calcineurin-NFAT signaling is essential 

for and activated in pathological hypertrophy only (Wilkins et al., 2004). Since NFAT is a 

transcription factor, it`s activity can be measured by the mRNA expression of target genes, e.g. 

RCAN1 (Rothermel et al., 2001). In the current study, cortisol treatment induced an increase in 

RCAN1 mRNA expression, which is in line with previous findings of increased RCAN1 expression in 

rainbow trout with endogenously high plasma cortisol levels (Johansen et al., 2011). Combined, these 

data indicate pro-hypertrophic NFAT-signaling in the rainbow trout heart in response to chronic 

elevation of cortisol, and that NFAT signaling in pathological cardiac hypertrophy is conserved from 

fish to mammals.  

It is reasonable to speculate that cortisol can be involved in adaptive cardiac hypertrophy in 

salmonids given the right circumstances. Upon salmonid sexual maturation and spawning migration, 

plasma levels of corticosteroids peak (Schmidt and Idler, 1962). In fact, plasma levels of cortisol can 

be exceptionally high during spawning migration (chronically up to 640 ng/ml), similar to those 

occurring during chronic stress (Carruth et al., 2000). Interestingly, this hyper-activation of both the 

hypothalamus- pituitary-interrenal (HPI) - and gonadal (HPG) axes during migration coincides with 

massive cardiac growth. In contrast to the cardiac hypertrophy observed in the current study though, 

cardiac growth in migrating fish is associated with improved mechanical performance and cardiac 

pumping capacity (Franklin and Davie, 1992). One explanation could be that cortisol serves as a pro-

hypertrophic stimulus (Ren et al., 2012), but that other factors (e.g. anabolic sex steroids) are 

necessary for the hypertrophy to be accompanied by adaptive changes such as increased force 

generating capacity. Assuming such a role for cortisol, large increases in cortisol under different 

circumstances (such as for example during chronic stress), could potentially remodel the heart in a 

non-adaptive manner similar to the current observations. The exact combination of circumstances and 

exposure levels promoting adaptive vs maladaptive cardiac hypertrophy clearly deserves further 

scrutiny.  

The mechanism by which cortisol and glucocorticoids induce cardiac hypertrophy remains 

controversial. In mammals, cortisol can induce cardiac hypertrophy signaling by directly binding to 

nuclear receptors (ligand-inducible transcription factors) in the cardiomyocyte. Ren et al. (2012) 

showed that as many as 75 genes in the cardiac hypertrophy signaling pathway were altered by in vitro 

glucocorticoid treatment. Cortisol can, however, also act systemically by altering variables such as 

blood pressure, blood viscosity and/or vascular resistance and thereby increase the workload of the 
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heart (Barton et al., 1987; Ahmed, 2013). We did not find any indications of increased blood viscosity 

since neither hematocrit nor hemoglobin were altered by cortisol treatment.  

In rodents, excessive glucocorticoids have been shown to induce hypertension (Ahmed, 2013) 

which is a major risk factor for pathological cardiac hypertrophy in mammals (Lloyd-Jones et al., 

2002). We did not see an increase in dorsal aortic blood pressure. However, systemic resistance was 

increased in cortisol treated fish. Ventral aortic blood pressure and branchial resistance are more direct 

measures of cardiac afterload, but increased systemic resistance has been shown to increase ventral 

and dorsal aortic blood pressure in trout (Conklin et al., 1997). Thus, our findings suggest that the 

observed increase in systemic resistance plays a role for mediating cardiac hypertrophy by elevating 

cardiac workload. In addition, increased systemic resistance can partly explain the reduced CO 

observed. Interestingly, cortisol treated fish appeared to compensate for the reduction in CO by 

increasing heart rate. 

The increased heart rate could reflect increased catecholaminergic innervation or decreased 

cholinergic tone on the heart. Reid et al. (1996) showed that cortisol administration in rainbow trout 

altered the secretion of catecholamines which are well known for their inotropic effects on the heart. 

By pharmacologically blocking both adrenergic and cholinergic receptors, we found that the increased 

heart rate in cortisol-treated fish was likely due to a reduction in cholinergic tone rather than an 

increase in adrenergic signaling.  

In summary, our results suggest a causative mechanism for the previously observed 

association between endogenous stress responsiveness and cardiac hypertrophy. This is the first study 

to report and integrate the etiology, physiology and molecular biology of cortisol-induced pathological 

remodeling in fish. Our data indicate cortisol and probably also stress as contributors to cardiac 

pathology in teleosts. Further, our data indicate that gene activation in pathological cardiac 

hypertrophy is evolutionarily conserved between fish and mammals. This in turn actualizes the 

question of why and how an apparently maladaptive trophic effect of an otherwise catabolic hormone 

is preserved in both piscine and tetrapod trajectories of vertebrate development.  
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Figures 

 
 

Fig. 1. Chronic cortisol exposure increases ventricular size in rainbow trout. (A) Image of 

ventricles of control (325g body weight and 0.18 g ventricle weight, left) and fish treated with cortisol 

for 45 days (244 g body weight and 0.29 g ventricle weight, right). Scale bar, 1 cm. (B) Relative 

cardiosomatic index (CSI) (wet weight/body weight) following 45 days (45D) of cortisol treatment 

(n=28/group). (C) Absolute ventricle weight and (D) absolute body weight following 45 days of 

cortisol treatment (n=28/group). (E) Magnetic Resonance (MR)-image of cross sections of ventricles 

of control (600 g body weight and 0.44 g ventricle weight, left) and fish treated with cortisol for 45 

days (700 g body weight and 0.86 g ventricle weight, right). Scale bar, 1 cm. (F) Relative proportion 

of compact (comp) to non-compact (non-comp) myocardium following 45 days of cortisol treatment 

(n=21/group). (G) Percent (%) water content (g water/g wet weight*100) in ventricles following 45 

days of cortisol treatment (ncontrol=8, ncortisol=7). (H) mRNA abundance of Proliferating cell nuclear 

antigen (PCNA) relative to the standard gene β-actin following 45 0) days of cortisol treatment 

(ncontrol=9, ncortisol=10. Data are either means ± s.e.m. (C, D and G) or means ± s.e.m relative to 

treatment control (B, F and H). The mean CSI, ratio of comp to non-comp myocardium and PCNA 

expression of control fish were normalized to 1.Statistical differences were tested by Two-way 

ANOVA (for CSI) or unpaired two-tailed t-tests. *p<0.05 vs. control. 
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Figure 2. Cortisol-induced hypertrophic remodeling is associated with increased expression 

levels of signature molecules of cardiac pathology in rainbow trout. mRNA abundance of (A) slow 

myosin heavy chain 2 (SMLC2), (B) ventricular myosin heavy chain (VMHC), (C) muscle Lim 

Protein (MLP), (D) regulator of calcineurin 1 (RCAN1), (E) A-type natriuretic peptide (ANP) and (F) 

B-type natriuretic peptide relative to the standard gene β-actin following 45 days (45D) of cortisol 

treatment (ncontrol=9, ncortisol=10).  Data are means ± s.e.m relative to control. Statistical differences 

were tested by unpaired two-tailed t-tests. *p<0.05 vs. control.  
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Figure 3. Chronic cortisol exposure impairs cardiovascular function in rainbow trout.  

Maximum (A, upper panel, ncontrol=8, ncortisol=9) and resting (A, middle panel, ncontrol=5, ncortisol=9) 

cardiac output (CO), CO scope (A, lower panel, ncontrol=5, ncortisol=9), maximum (B, upper panel, 

ncontrol=8, ncortisol=9) and resting (B, middle panel, ncontrol=5, ncortisol=9) stroke volume (VS), VS scope 

(B, lower panel, ncontrol=5, ncortisol=9), maximum (C, upper panel, ncontrol=12, ncortisol=10) and resting 

(C, middle panel, ncontrol=9, ncortisol=10) heart rate (fH) and fH scope (C, lower panel, ncontrol=9, 

ncortisol=10) following 45 days (45D) of cortisol treatment is shown. Statistical differences were tested 

by unpaired two-tailed t-tests. *p<0.05, vs. control. 
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Figure 4. Hemodynamic and hematological variables and swimming performance following 

chronic cortisol exposure in rainbow trout. (A) Cholinergic and (B) adrenergic tone (n=9/group), 

resting (C) hematocrit and (D) hemoglobin (n=9/group), maximum (E) hematocrit and (F) 

hemoglobin (n=9/group) and (G) resting (ncontrol=5, ncortisol=9) and (H) maximum (ncontrol=7, 

ncortisol=9) systemic resistance (Rsys) following 45 days (45D) of cortisol treatment. (I) Swimming 

performance (Ucrit) following 90 days (90D) of cortisol treatment (ncontrol=6, ncortisol=10). Statistical 

differences were tested by unpaired two-tailed t-tests. *p<0.05, vs. control. 
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Supporting Figures 

 

Fig. S1. Effects of chronic cortisol administration on cardiosomatic index in male and female rainbow trout. 
Relative cardiosomatic index (CSI) (wet weight/body weight) following 45 days (45D) of cortisol treatment in male 

(ncontrol=16, ncortisol=17) and female (ncontrol=12, ncortisol=11) rainbow trout.  Data are means ± s.e.m. Statistical 

differences were tested by two-way ANOVA.  
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Fig. S2. Effects of chronic cortisol administration on blood pressure in rainbow trout. Maximum (A, upper panel, 
ncontrol=11, ncortisol=10) and resting (A, middle panel, ncontrol=9, ncortisol=10) systolic blood pressure, systolic 
blood pressure scope (A, lower panel, ncontrol=9, ncortisol=10), maximum (B, upper panel, ncontrol=11, 
ncortisol=10) and resting (B, middle panel, ncontrol=9, ncortisol=10) diastolic blood pressure, diastolic blood 
pressure scope (B, lower panel, ncontrol=9, ncortisol=10), maximum (C, upper panel, ncontrol=11, ncortisol=10) 
and resting (C, middle panel, ncontrol=9, ncortisol=10) mean blood pressure and mean blood pressure scope (C, 
lower panel, ncontrol=9, ncortisol=10) following 45 days (45D) of cortisol treatment. Data are means ± s.e.m. 
Statistical differences were tested by unpaired t-tests. 
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