21 research outputs found

    FGF receptor genes and breast cancer susceptibility: results from the Breast Cancer Association Consortium

    Get PDF
    Background:Breast cancer is one of the most common malignancies in women. Genome-wide association studies have identified FGFR2 as a breast cancer susceptibility gene. Common variation in other fibroblast growth factor (FGF) receptors might also modify risk. We tested this hypothesis by studying genotyped single-nucleotide polymorphisms (SNPs) and imputed SNPs in FGFR1, FGFR3, FGFR4 and FGFRL1 in the Breast Cancer Association Consortium. Methods:Data were combined from 49 studies, including 53 835 cases and 50 156 controls, of which 89 050 (46 450 cases and 42 600 controls) were of European ancestry, 12 893 (6269 cases and 6624 controls) of Asian and 2048 (1116 cases and 932 controls) of African ancestry. Associations with risk of breast cancer, overall and by disease sub-type, were assessed using unconditional logistic regression. Results:Little evidence of association with breast cancer risk was observed for SNPs in the FGF receptor genes. The strongest evidence in European women was for rs743682 in FGFR3; the estimated per-allele odds ratio was 1.05 (95 confidence interval=1.02-1.09, P=0.0020), which is substantially lower than that observed for SNPs in FGFR2. Conclusion:Our results suggest that common variants in the other FGF receptors are not associated with risk of breast cancer to the degree observed for FGFR2. © 2014 Cancer Research UK

    Optimization of reaction conditions in the enzymatic interesterification of soybean oil and fully hydrogenated soybean oil to produce plastic fats

    No full text
    Semisolid fats obtained from oils and fats through enzymatic interesterification have interesting applications. The effect of certain reaction parameters (enzyme concentration, moisture content, reaction time, substrate ratio, temperature, and agitation level) over the enzymatic interesterification of fully hydrogenated soybean oil (FHSO) and refined soybean oil (SO) using two immobilized enzyme types (Lipozyme RM IM and Lipozyme TL IM), was studied with a fractional factorial design (FFD). The reaction products were analyzed with respect to melting point (mp), by-products content and triacylglycerols (TAG) composition. It was found that substrate ratio, reaction time, and their interaction presented the most significant contributions to mp, varying this from 43.4 to 61.5 °C. The highest contributions to by-product content were presented by time and its interaction with the amount of molecular sieves, mainly for Lipozyme TL IM. Through the models obtained, theoretical conditions to achieve minimal by-product generation and mp were found, being 5.0 % (w/wsubst.) of any of both lipases, 24 h, 70:30 (oil:fat, % w/w), 65 °C, 230 rpm, and absence of molecular sieves. Regression models for TAG groups as a function of significant factors and interactions were constructed, offering useful information to establish the reaction conditions for obtaining a product with a target mp or chemical composition.Fil: Pacheco, Consuelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Planta Piloto de Ingeniería Química (i); Argentina. Universidad Nacional del Sur; ArgentinaFil: Palla, Camila Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Planta Piloto de Ingeniería Química (i); Argentina. Universidad Nacional del Sur; ArgentinaFil: Crapiste, Guillermo Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Planta Piloto de Ingeniería Química (i); Argentina. Universidad Nacional del Sur; ArgentinaFil: Carrin, Maria Elena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Planta Piloto de Ingeniería Química (i); Argentina. Universidad Nacional del Sur; Argentin
    corecore