946 research outputs found

    The importance of iron in pathophysiologic conditions

    Get PDF
    Biological iron is necessary for vital functions and also potentially toxic to the organisms. This dual effect raised the interest of many investigators to study the mechanisms controlling its homeostasis that are altered in many pathologic conditions. Recently the understanding of iron metabolism significantly improved with the discovery of genes responsible for genetic disorders, such as hemochromatosis, the IRE/IRPs machinery and the hepcidin-ferroportin axis, which allowed to elucidate the basis of cellular and systemic iron homeostasis. In addition, these advances disclosed a causal link between deregulation of iron homeostasis, inflammation and oxidative stress, often induced by the iron accumulation that is commonly observed in many pathologic conditions

    Iron homeostasis in health and disease

    Get PDF
    Iron is required for the survival of most organisms, including bacteria, plants, and humans. Its homeostasis in mammals must be fine-tuned to avoid iron deficiency with a reduced oxygen transport and diminished activity of Fe-dependent enzymes, and also iron excess that may catalyze the formation of highly reactive hydroxyl radicals, oxidative stress, and programmed cell death. The advance in understanding the main players and mechanisms involved in iron regulation significantly improved since the discovery of genes responsible for hemochromatosis, the IRE/IRPs machinery, and the hepcidin-ferroportin axis. This review provides an update on the molecular mechanisms regulating cellular and systemic Fe homeostasis and their roles in pathophysiologic conditions that involve alterations of iron metabolism, and provides novel therapeutic strategies to prevent the deleterious effect of its deficiency/overload

    Iron as therapeutic target in human diseases

    Get PDF
    publishersversionpublishe

    Iron as Therapeutic Targets in Human Diseases Volume 2

    Get PDF
    Iron is an essential element for almost all organisms, a cofactor playing a crucial role in a number of vital functions, including oxygen transport, DNA synthesis, and respiration. However, its ability to exchange electrons renders excess iron potentially toxic, since it is capable of catalyzing the formation of highly poisonous free radicals. As a consequence, iron homeostasis is tightly controlled by sophisticated mechanisms that have been partially elucidated. Because of its biological importance, numerous disorders have been recently linked to the deregulation of iron homeostasis, which include not only the typical disorders of iron overload and deficiency but also cancer and neurodegenerative diseases. This leads iron metabolism to become an interesting therapeutic target for novel pharmacological treatments against these diseases. Several therapies are currently under development for hematological disorders, while other are being considered for different pathologies. The therapeutic targeting under study includes the hepcidin/ferroportin axis for the regulation of systemic iron homeostasis, complex cytosolic machineries for the regulation of the intracellular iron status and its association with oxidative damage, and reagents exploiting proteins of iron metabolism such as ferritin and transferrin receptor. A promising potential target is a recently described form of programmed cell death named ferroptosis, in which the role of iron is essential but not completely clarified. This Special Issue has the aim to summarize the state-of-the-art, and the latest findings published in the iron field, as well as to elucidate future directions

    Tissue damage control in disease tolerance

    Get PDF
    The deposited article is a prost-print version.This publication hasn't any creative commons license associated.This deposit is composed by the main article, and it hasn't any supplementary materials associated.Immune-driven resistance mechanisms are the prevailing host defense strategy against infection. By contrast, disease tolerance mechanisms limit disease severity by preventing tissue damage or ameliorating tissue function without interfering with pathogen load. We propose here that tissue damage control underlies many of the protective effects of disease tolerance. We explore the mechanisms of cellular adaptation that underlie tissue damage control in response to infection as well as sterile inflammation, integrating both stress and damage responses. Finally, we discuss the potential impact of targeting these mechanisms in the treatment of disease.Fundação para a Ciência e Tecnologia grants: (PTDC/SAU-TOX/116627/2010, HMSP-ICT/0022/2010, SFRH/BPD/44256/2008); European Commission 7th Framework grant: (ERC-2011-AdG. 294709-DAMAGECONTROL); Deutsche Forschungsgemeinschaft grant: (DFG WE 4971/3-1).info:eu-repo/semantics/publishedVersio

    Iron overload in Plasmodium berghei-infected placenta as a pathogenesis mechanism of fetal death

    Get PDF
    This deposit is composed by the main article, and it hasn't any supplementary materials associated.Plasmodium infection during gestation may lead to severe clinical manifestations including abortion, stillbirth, intrauterine growth retardation, and low birth weight. Mechanisms underlying such poor pregnancy outcomes are still unclear. In the animal model of severe placental malaria (PM), in utero fetal death frequently occurs and mothers often succumb to infection before or immediately after delivery. Plasmodium berghei-infected erythrocytes (IEs) continuously accumulate in the placenta, where they are then phagocytosed by fetal-derived placental cells, namely trophoblasts. Inside the phagosomes, disruption of IEs leads to the release of non-hemoglobin bound heme, which is subsequently catabolized by heme oxygenase-1 into carbon monoxide, biliverdin, and labile iron. Fine-tuned regulatory mechanisms operate to maintain iron homeostasis, preventing the deleterious effect of iron-induced oxidative stress. Our preliminary results demonstrate that iron overload in trophoblasts of P. berghei-infected placenta is associated with fetal death. Placentas which supported normally developing embryos showed no iron accumulation within the trophoblasts. Placentas from dead fetuses showed massive iron accumulation, which was associated with parasitic burden. Here we present preliminary data suggesting that disruption of iron homeostasis in trophoblasts during the course of PM is a consequence of heme accumulation after intense IE engulfment. We propose that iron overload in placenta is a pathogenic component of PM, contributing to fetal death. The mechanism through which it operates still needs to be elucidated.FCT: Portugal (EXPL-IMI-IMU-0428/2013), SFRH/BPD/44256/2008, SFRH/BPD/44486/2008

    Heme Cytotoxicity and the Pathogenesis of Immune-Mediated Inflammatory Diseases

    Get PDF
    Heme, iron (Fe) protoporphyrin IX, functions as a prosthetic group in a range of hemoproteins essential to support life under aerobic conditions. The Fe contained within the prosthetic heme groups of these hemoproteins can catalyze the production of reactive oxygen species. Presumably for this reason, heme must be sequestered within those hemoproteins, thereby shielding the reactivity of its Fe-heme. However, under pathologic conditions associated with oxidative stress, some hemoproteins can release their prosthetic heme groups. While this heme is not necessarily damaging per se, it becomes highly cytotoxic in the presence of a range of inflammatory mediators such as tumor necrosis factor. This can lead to tissue damage and, as such, exacerbate the pathologic outcome of several immune-mediated inflammatory conditions. Presumably, targeting “free heme” may be used as a therapeutic intervention against these diseases

    A Target for Protective Interventions against Parkinson’s Disease

    Get PDF
    Funding Information: This research was funded by FWO and F.R.S.-FNRS under the Excellence of Science Program (EOS), MODEL-IDI Ref. number 30826052, and CD-INFLADIS Ref. number 40007512. A.C.P. is funded by FCT SFRH/BD/14611/2019. I.S.L was funded by FCT SFRH/BD/114552/2016 and is funded by MODEL-IDI Ref. number 30826052; A.C.M. was funded by FCT SFRH/BD/104599/2014; R.G. was funded by FCT IF 01495/2015. Publisher Copyright: © 2023 by the authors.Sub-chronic inflammation, caused by age-related dysbiosis, primes the brain to neuroinflammation and neurodegenerative diseases. Evidence revealed that Parkinson’s disease (PD) might originate in the gut, demonstrating gastro-intestinal disturbances, as reported by PD patients long before developing motor symptoms. In this study, we conducted comparative analyses in relatively young and old mice maintained in conventional or gnotobiotic conditions. We aimed to confirm that the effects induced by age-related dysbiosis, rather than aging itself, sensitize to PD onset. This hypothesis was confirmed in germ-free (GF) mice, which proved resistant to the pharmacological induction of PD, regardless of their age. Contrary to conventional animals, old GF mice did not develop an inflammatory phenotype or an accumulation of iron in the brain, two catalysts sensitizing to disease onset. The resistance of GF mice to PD is reverted when colonized with stool collected from conventional old animals, but not if receiving bacterial content from young mice. Hence, changes in gut microbiota composition are a risk factor for PD development and can be targeted preventively by iron chelators, shown to protect the brain from pro-inflammatory intestinal priming that sensitizes to neuroinflammation and the development of severe PD.publishersversionpublishe

    The death receptor antagonist FAIM promotes neurite outgrowth by a mechanism that depends on ERK and NF-κB signaling

    Get PDF
    Fas apoptosis inhibitory molecule (FAIM) is a protein identified as an antagonist of Fas-induced cell death. We show that FAIM overexpression fails to rescue neurons from trophic factor deprivation, but exerts a marked neurite growth–promoting action in different neuronal systems. Whereas FAIM overexpression greatly enhanced neurite outgrowth from PC12 cells and sympathetic neurons grown with nerve growth factor (NGF), reduction of endogenous FAIM levels by RNAi decreased neurite outgrowth in these cells. FAIM overexpression promoted NF-κB activation, and blocking this activation by using a super-repressor IκBα or by carrying out experiments using cortical neurons from mice that lack the p65 NF-κB subunit prevented FAIM-induced neurite outgrowth. The effect of FAIM on neurite outgrowth was also blocked by inhibition of the Ras–ERK pathway. Finally, we show that FAIM interacts with both Trk and p75 neurotrophin receptor NGF receptors in a ligand-dependent manner. These results reveal a new function of FAIM in promoting neurite outgrowth by a mechanism involving activation of the Ras–ERK pathway and NF-κB
    corecore