32 research outputs found

    Functional traits determine plant co-occurrence more than environment or evolutionary relatedness in global drylands

    Get PDF
    Plant–plant interactions are driven by environmental conditions, evolutionary relationships (ER) and the functional traits of the plants involved. However, studies addressing the relative importance of these drivers are rare, but crucial to improve our predictions of the effects of plant–plant interactions on plant communities and of how they respond to differing environmental conditions. To analyze the relative importance of – and interrelationships among – these factors as drivers of plant–plant interactions, we analyzed perennial plant co-occurrence at 106 dryland plant communities established across rainfall gradients in nine countries. We used structural equation modelling to disentangle the relationships between environmental conditions (aridity and soil fertility), functional traits extracted from the literature, and ER, and to assess their relative importance as drivers of the 929 pairwise plant–plant co-occurrence levels measured. Functional traits, specifically facilitated plants’ height and nurse growth form, were of primary importance, and modulated the effect of the environment and ER on plant–plant interactions. Environmental conditions and ER were important mainly for those interactions involving woody and graminoid nurses, respectively. The relative importance of different plant–plant interaction drivers (ER, functional traits, and the environment) varied depending on the region considered, illustrating the difficulty of predicting the outcome of plant–plant interactions at broader spatial scales. In our global-scale study on drylands, plant–plant interactions were more strongly related to functional traits of the species involved than to the environmental variables considered. Thus, moving to a trait-based facilitation/competition approach help to predict that: (1) positive plant–plant interactions are more likely to occur for taller facilitated species in drylands, and (2) plant–plant interactions within woody-dominated ecosystems might be more sensitive to changing environmental conditions than those within grasslands. By providing insights on which species are likely to better perform beneath a given neighbour, our results will also help to succeed in restoration practices involving the use of nurse plants

    Spread of a SARS-CoV-2 variant through Europe in the summer of 2020.

    Get PDF
    Following its emergence in late 2019, the spread of SARS-CoV-21,2 has been tracked by phylogenetic analysis of viral genome sequences in unprecedented detail3–5. Although the virus spread globally in early 2020 before borders closed, intercontinental travel has since been greatly reduced. However, travel within Europe resumed in the summer of 2020. Here we report on a SARS-CoV-2 variant, 20E (EU1), that was identified in Spain in early summer 2020 and subsequently spread across Europe. We find no evidence that this variant has increased transmissibility, but instead demonstrate how rising incidence in Spain, resumption of travel, and lack of effective screening and containment may explain the variant’s success. Despite travel restrictions, we estimate that 20E (EU1) was introduced hundreds of times to European countries by summertime travellers, which is likely to have undermined local efforts to minimize infection with SARS-CoV-2. Our results illustrate how a variant can rapidly become dominant even in the absence of a substantial transmission advantage in favourable epidemiological settings. Genomic surveillance is critical for understanding how travel can affect transmission of SARS-CoV-2, and thus for informing future containment strategies as travel resumes. © 2021, The Author(s), under exclusive licence to Springer Nature Limited

    Accelerated surgery versus standard care in hip fracture (HIP ATTACK): an international, randomised, controlled trial

    Get PDF

    Human impacts and aridity differentially alter soil N availability in drylands worldwide

    No full text
    [Aims]: Climate and human impacts are changing the nitrogen (N) inputs and losses in terrestrial ecosystems. However, it is largely unknown how these two major drivers of global change will simultaneously influence the N cycle in drylands, the largest terrestrial biome on the planet. We conducted a global observational study to evaluate how aridity and human impacts, together with biotic and abiotic factors, affect key soil variables of the N cycle.[Location]: Two hundred and twenty-four dryland sites from all continents except Antarctica widely differing in their environmental conditions and human influence.[Methods]: Using a standardized field survey, we measured aridity, human impacts (i.e. proxies of land uses and air pollution), key biophysical variables (i.e. soil pH and texture and total plant cover) and six important variables related to N cycling in soils: total N, organic N, ammonium, nitrate, dissolved organic:inorganic N and N mineralization rates. We used structural equation modelling to assess the direct and indirect effects of aridity, human impacts and key biophysical variables on the N cycle.[Results]: Human impacts increased the concentration of total N, while aridity reduced it. The effects of aridity and human impacts on the N cycle were spatially disconnected, which may favour scarcity of N in the most arid areas and promote its accumulation in the least arid areas.[Main conclusions]: We found that increasing aridity and anthropogenic pressure are spatially disconnected in drylands. This implies that while places with low aridity and high human impact accumulate N, most arid sites with the lowest human impacts lose N. Our analyses also provide evidence that both increasing aridity and human impacts may enhance the relative dominance of inorganic N in dryland soils, having a negative impact on key functions and services provided by these ecosystems.This research is supported by the European Research Council (ERC) under the European Community's Seventh Framework Programme (FP7/2007‐2013)/ERC grant agreement no. 242658 (BIOCOM), and by the Ministry of Science and Innovation of the Spanish Government, grant no. CGL2010‐21381. CYTED funded networking activities (EPES, Acción 407AC0323). S.G. was funded by CONICYT/FONDAP/15110009.Peer Reviewe

    Human impacts and aridity differentially alter soil N availability in drylands worldwide

    Get PDF
    Aims Climate and human impacts are changing the nitrogen (N) inputs and losses in terrestrial ecosystems. However, it is largely unknown how these two major drivers of global change will simultaneously influence the N cycle in drylands, the largest terrestrial biome on the planet. We conducted a global observational study to evaluate how aridity and human impacts, together with biotic and abiotic factors, affect key soil variables of the N cycle. Location Two hundred and twenty-four dryland sites from all continents except Antarctica widely differing in their environmental conditions and human influence. Methods Using a standardized field survey, we measured aridity, human impacts (i.e. proxies of land uses and air pollution), key biophysical variables (i.e. soil pH and texture and total plant cover) and six important variables related to N cycling in soils: total N, organic N, ammonium, nitrate, dissolved organic:inorganic N and N mineralization rates. We used structural equation modelling to assess the direct and indirect effects of aridity, human impacts and key biophysical variables on the N cycle. Results Human impacts increased the concentration of total N, while aridity reduced it. The effects of aridity and human impacts on the N cycle were spatially disconnected, which may favour scarcity of N in the most arid areas and promote its accumulation in the least arid areas. Main conclusions We found that increasing aridity and anthropogenic pressure are spatially disconnected in drylands. This implies that while places with low aridity and high human impact accumulate N, most arid sites with the lowest human impacts lose N. Our analyses also provide evidence that both increasing aridity and human impacts may enhance the relative dominance of inorganic N in dryland soils, having a negative impact on key functions and services provided by these ecosystems

    A Predictive Model of Mortality in Patients With Bloodstream Infections due to Carbapenemase-Producing Enterobacteriaceae

    No full text
    Objective To develop a score to predict mortality in patients with bloodstream infections (BSIs) due to carbapenemase-producing Enterobacteriaceae (CPE). Patients and Methods A multinational retrospective cohort study (INCREMENT project) was performed from January 1, 2004, through December 31, 2013. Patients with clinically relevant monomicrobial BSIs due to CPE were included and randomly assigned to either a derivation cohort (DC) or a validation cohort (VC). The variables were assessed on the day the susceptibility results were available, and the predictive score was developed using hierarchical logistic regression. The main outcome variable was 14-day all-cause mortality. The predictive ability of the model and scores were measured by calculating the area under the receiver operating characteristic curve. The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy were calculated for different cutoffs of the score. Results The DC and VC included 314 and 154 patients, respectively. The final logistic regression model of the DC included the following variables: severe sepsis or shock at presentation (5 points); Pitt score of 6 or more (4 points); Charlson comorbidity index of 2 or more (3 points); source of BSI other than urinary or biliary tract (3 points); inappropriate empirical therapy and inappropriate early targeted therapy (2 points). The score exhibited an area under the receiver operating characteristic curve of 0.80 (95% CI, 0.74-0.85) in the DC and 0.80 (95% CI, 0.73-0.88) in the VC. The results for 30-day all-cause mortality were similar. Conclusion A validated score predictive of early mortality in patients with BSIs due to CPE was developed. Trial Registration clinicaltrials.gov Identifier: NCT01 764490. © 2016 Mayo Foundation for Medical Education and Researc
    corecore