259 research outputs found
Phamacognostical and Pharmaceutical Evaluation of Chandrashakaladi Vataka - A herbal formulation
Background: Quality control and the standardization of herbal medicines involve steps like standard source and quality of raw materials, good manufacturing practices and adequate analytical screening. These practices play a vital role in guaranting the quality and stability of herbal preparations. Chandrashakaladi Vataka is an Ayurvedic herbal formulation mentioned to be beneficial in Kushtha. Till date no published data is available on its analytical profile. Aim: To develop the Pharmacognostical and Phyto-chemical profile of Chandrashakaladi Vataka. Material and Methods: Chandrashakaladi Vataka was prepared as per classical method and analytical findings were recorded. Samples were subjected to organoleptic analysis, physico-chemical analysis and HPTLC examination by optimizing the solvent systems. Results and Conclusions: Pharmacognostical profile of Chandrashakaladi Vataka was established. Loss on drying, Ash value, Acid insoluble extract, Methanol soluble extract, Chandrashakaladi Vataka was found within prescribed limits. HPTLC profile of Chandrashakaladi Vataka revealed 12 spots at 254 nm and 13 spots at 366 nm
Spectrum of clinical disease in a series of 135 hospitalised HIV-infected patients from north India
BACKGROUND: Literature on the spectrum of opportunistic disease in human immunodeficiency virus (HIV)-infected patients from developing countries is sparse. The objective of this study was to document the spectrum and determine the frequency of various opportunistic infections (OIs) and non-infectious opportunistic diseases, in hospitalised HIV-infected patients from north India. METHODS: One hundred and thirty five consecutive, HIV-infected patients (age 34 ± 10 years, females 17%) admitted to a tertiary care hospital in north India, for the evaluation and management of an OI or HIV-related disorder between January 2000 and July 2003, were studied. RESULTS: Fever (71%) and weight loss (65%) were the commonest presenting symptoms. Heterosexual transmission was the commonest mode of HIV-acquisition. Tuberculosis (TB) was the commonest OI (71%) followed by candidiasis (39.3%), Pneumocystis jiroveci pneumonia (PCP) (7.4%), cryptococcal meningitis and cerebral toxoplasmosis (3.7% each). Most of the cases of TB were disseminated (64%). Apart from other well-recognised OIs, two patients had visceral leishmaniasis. Two cases of HIV-associated lymphoma were encountered. CD4+ cell counts were done in 109 patients. Majority of the patients (82.6%) had CD4+ counts <200 cells/μL. Fifty patients (46%) had CD4+ counts <50 cells/μL. Only 50 patients (37%) received antiretroviral therapy. Twenty one patients (16%) died during hospital stay. All but one deaths were due to TB (16 patients; 76%) and PCP (4 patients; 19%). CONCLUSIONS: A wide spectrum of disease, including both OIs and non-infectious opportunistic diseases, is seen in hospitalised HIV-infected patients from north India. Tuberculosis remains the most common OI and is the commonest cause of death in these patients
Glycolate Oxidase Isozymes Are Coordinately Controlled by GLO1 and GLO4 in Rice
Glycolate oxidase (GLO) is a key enzyme in photorespiratory metabolism. Four putative GLO genes were identified in the rice genome, but how each gene member contributes to GLO activities, particularly to its isozyme profile, is not well understood. In this study, we analyzed how each gene plays a role in isozyme formation and enzymatic activities in both yeast cells and rice tissues. Five GLO isozymes were detected in rice leaves. GLO1 and GLO4 are predominately expressed in rice leaves, while GLO3 and GLO5 are mainly expressed in the root. Enzymatic assays showed that all yeast-expressed GLO members except GLO5 have enzymatic activities. Further analyses suggested that GLO1, GLO3 and GLO4 interacted with each other, but no interactions were observed for GLO5. GLO1/GLO4 co-expressed in yeast exhibited the same isozyme pattern as that from rice leaves. When either GLO1 or GLO4 was silenced, expressions of both genes were simultaneously suppressed and most of the GLO activities were lost, and consistent with this observation, little GLO isozyme protein was detected in the silenced plants. In contrast, no observable effect was detected when GLO3 was suppressed. Comparative analyses between the GLO isoforms expressed in yeast and the isozymes from rice leaves indicated that two of the five isozymes are homo-oligomers composed of either GLO1 or GLO4, and the other three are hetero-oligomers composed of both GLO1 and GLO4. Our current data suggest that GLO isozymes are coordinately controlled by GLO1 and GLO4 in rice, and the existence of GLO isozymes and GLO molecular and compositional complexities implicate potential novel roles for GLO in plants
In vitro and in vivo delivery of a sustained release nanocarrier-based formulation of an MRTF/SRF inhibitor in conjunctival fibrosis
Abstract
Background
Sustained drug delivery is a large unmet clinical need in glaucoma. Here, we incorporated a Myocardin-Related Transcription Factor/Serum Response Factor inhibitor, CCG-222740, into slow release large unilamellar vesicles derived from the liposomes DOTMA (1,2-di-O-octadecenyl-3-trimethylammonium propane) and DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine), and tested their effects in vitro and in vivo.
Results
The vesicles were spherical particles of around 130 nm and were strongly cationic. A large amount of inhibitor could be incorporated into the vesicles. We showed that the nanocarrier CCG-222740 formulation gradually released the inhibitor over 14 days using high performance liquid chromatography. Nanocarrier CCG-222740 significantly decreased ACTA2 gene expression and was not cytotoxic in human conjunctival fibroblasts. In vivo, nanocarrier CCG-222740 doubled the bleb survival from 11.0 ± 0.6 days to 22.0 ± 1.3 days (p = 0.001), decreased conjunctival scarring and did not have any local or systemic adverse effects in a rabbit model of glaucoma filtration surgery.
Conclusions
Our study demonstrates proof-of-concept that a nanocarrier-based formulation efficiently achieves a sustained release of a Myocardin-Related Transcription Factor/Serum Response Factor inhibitor and prevents conjunctival fibrosis in an established rabbit model of glaucoma filtration surgery.https://deepblue.lib.umich.edu/bitstream/2027.42/146540/1/12951_2018_Article_425.pd
UPF201 Archaeal Specific Family Members Reveal Structural Similarity to RNA-Binding Proteins but Low Likelihood for RNA-Binding Function
We have determined X-ray crystal structures of four members of an archaeal specific family of proteins of unknown function (UPF0201; Pfam classification: DUF54) to advance our understanding of the genetic repertoire of archaea. Despite low pairwise amino acid sequence identities (10–40%) and the absence of conserved sequence motifs, the three-dimensional structures of these proteins are remarkably similar to one another. Their common polypeptide chain fold, encompassing a five-stranded antiparallel β-sheet and five α-helices, proved to be quite unexpectedly similar to that of the RRM-type RNA-binding domain of the ribosomal L5 protein, which is responsible for binding the 5S- rRNA. Structure-based sequence alignments enabled construction of a phylogenetic tree relating UPF0201 family members to L5 ribosomal proteins and other structurally similar RNA binding proteins, thereby expanding our understanding of the evolutionary purview of the RRM superfamily. Analyses of the surfaces of these newly determined UPF0201 structures suggest that they probably do not function as RNA binding proteins, and that this domain specific family of proteins has acquired a novel function in archaebacteria, which awaits experimental elucidation
Multispacer Sequence Typing for Mycobacterium tuberculosis Genotyping
Background: Genotyping methods developed to survey the transmission dynamics of Mycobacterium tuberculosis currently rely on the interpretation of restriction and amplification profiles. Multispacer sequence typing (MST) genotyping is based on the sequencing of several intergenic regions selected after complete genome sequence analysis. It has been applied to various pathogens, but not to M. tuberculosis. Methods and Findings: In M. tuberculosis, the MST approach yielded eight variable intergenic spacers which included four previously described variable number tandem repeat loci, one single nucleotide polymorphism locus and three newly evaluated spacers. Spacer sequence stability was evaluated by serial subculture. The eight spacers were sequenced in a collection of 101 M. tuberculosis strains from five phylogeographical lineages, and yielded 29 genetic events including 13 tandem repeat number variations (44.82%), 11 single nucleotide mutations (37.93%) and 5 deletions (17.24%). These 29 genetic events yielded 32 spacer alleles or spacer-types (ST) with an index of discrimination of 0.95. The distribution of M. tuberculosis isolates into ST profiles correlated with their assignment into phylogeographical lineages. Blind comparison of a further 93 M. tuberculosis strains by MST and restriction fragment length polymorphism-IS6110 fingerprinting and mycobacterial interspersed repetitive units typing, yielded an index of discrimination of 0.961 and 0.992, respectively. MST yielded 41 different profiles delineating 16 related groups and proved to be more discriminatory than IS6110-based typing for isolates containing M<8 IS6110 copies (P<0.0003). MST was successfully applied to 7/10 clinical specimens exhibiting a Cts <= 42 cycles in internal transcribed spacer-real time PCR. Conclusions: These results support MST as an alternative, sequencing-based method for genotyping low IS6110 copy-number M. tuberculosis strains. The M. tuberculosis MST database is freely available (http://ifr48.timone.univ-mrs.fr/MST_MTuberculosis/mst)
The role of reactive oxygen species in apoptosis of the diabetic kidney
Increased levels of reactive oxygen species (ROS) by hyperglycemia can induce apoptosis of renal cells and diabetic nephropathy. The redox balance in the renal cell seems, therefore, of the utmost importance. ROS-mediated apoptosis may be further aggravated by an inadequate cytoprotective response against ROS. When there are insufficient cytoprotective and ROS scavenging molecules, ROS lead to considerable cellular damage and to a point of no return in apoptosis. Induction of cytoprotective proteins may prevent or attenuate apoptosis, renal cell injury, and finally diabetic nephropathy. Here, we discuss some mechanisms of apoptosis and several strategies that have been probed to ameliorate, or to prevent apoptosis in the diabetic kidney
Preferential Entry of Botulinum Neurotoxin A Hc Domain through Intestinal Crypt Cells and Targeting to Cholinergic Neurons of the Mouse Intestine
Botulism, characterized by flaccid paralysis, commonly results from botulinum neurotoxin (BoNT) absorption across the epithelial barrier from the digestive tract and then dissemination through the blood circulation to target autonomic and motor nerve terminals. The trafficking pathway of BoNT/A passage through the intestinal barrier is not yet fully understood. We report that intralumenal administration of purified BoNT/A into mouse ileum segment impaired spontaneous muscle contractions and abolished the smooth muscle contractions evoked by electric field stimulation. Entry of BoNT/A into the mouse upper small intestine was monitored with fluorescent HcA (half C-terminal domain of heavy chain) which interacts with cell surface receptor(s). We show that HcA preferentially recognizes a subset of neuroendocrine intestinal crypt cells, which probably represent the entry site of the toxin through the intestinal barrier, then targets specific neurons in the submucosa and later (90–120 min) in the musculosa. HcA mainly binds to certain cholinergic neurons of both submucosal and myenteric plexuses, but also recognizes, although to a lower extent, other neuronal cells including glutamatergic and serotoninergic neurons in the submucosa. Intestinal cholinergic neuron targeting by HcA could account for the inhibition of intestinal peristaltism and secretion observed in botulism, but the consequences of the targeting to non-cholinergic neurons remains to be determined
Interactive Effect of UVR and Phosphorus on the Coastal Phytoplankton Community of the Western Mediterranean Sea: Unravelling Eco- Physiological Mechanisms
Versión del editor4,411
- …