289 research outputs found

    A Survey on MRI Brain Image Segmentation Technique

    Full text link
    One of the most dangerous disease occurring these days i.e. brain tumor can be detected by MRI images. Biomedical imaging and medical image processing that plays a vital role for MRI images has now become the most challenging field in engineering and technology. A detailed information about the anatomy can be showed through MRI images, that helps in monitoring the disease and is beneficial for the diagnosis as it consists of a high tissue contrast and have fewer artifacts. For tracking the disease and to proceed its treatment, MRI images plays a key role. It is having several advantages over other imaging techniques and is an important step for post-processing of medical images. However, having a large amount of data for manual analysis can sometimes proved to be an obstacle in the way of its effective use. In this paper, the introduction of image processing and the details of image segmentation techniques such as image preprocessing, feature extraction, image enhancement and classification of tumor processes, and how image segmentation can be applied to all Other available imaging modalities that are different from one another. This paper provides the survey on various methods used for image segmentation that have been applied for MRI images, that detects the tumor by segmenting the brain images into constituent parts. Also the advantages and disadvantages of Image segmentation is discussed using the various approaches of image segmentation of MRI brain images

    Optimization of sentinel lymph node biopsy in breast cancer using an operative gamma camera

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sentinel lymph node (SLN) procedure is now a widely accepted method of LN staging in selected invasive breast cancers (unifocal, size ≤ 2 cm, clinically N0, without previous treatment). Complete axillary clearance is no longer needed if the SLN is negative. However, the oncological safety of this procedure remains to be addressed in randomized clinical trials. One main pitfall is the failure to visualize SLN, resulting in incorrect tumor staging, leading to suboptimal treatment or axillary recurrence. Operative gamma cameras have therefore been developed to optimize the SLN visualization and the quality control of surgery.</p> <p>Case presentation</p> <p>A 44-year-old female patient with a 14-mm infiltrative ductal carcinoma underwent the SLN procedure. An operative gamma camera was used during and after the surgery. The conventional lymphoscintigraphy showed only one SLN, which was also detected by the operative gamma camera, then removed and measured (9.6 kBq). It was analyzed by frozen sections, showing no cancer cells. During this analysis, the exploration of the axillary area with the operative gamma camera enabled the identification of a second SLN with low activity (0.5 kBq) that conventional lymphoscintigraphy, surgical probe and blue staining had failed to visualize. Histological examination revealed a macrometastasis. Axillary clearance was then performed, followed by a postoperative image proving that no SLN remained. Therefore, the use of the operative gamma camera prevented an under-estimation of staging which would have resulted in a suboptimal treatment for this patient.</p> <p>Conclusion</p> <p>This case report illustrates that an efficient operative gamma camera may be able to decrease the risk of false negative rate of the SLN procedure, and could be an additional tool to control the quality of the surgery.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov Identifier: NCT00357487</p

    Abundance measurements of H₂O and carbon-bearing species in the atmosphere of WASP-127b confirm its super-solar metallicity

    Get PDF
    The chemical abundances of exoplanet atmospheres may provide valuable information about the bulk compositions, formation pathways, and evolutionary histories of planets. Exoplanets with large, relatively cloud-free atmospheres, and which orbit bright stars provide the best opportunities for accurate abundance measurements. For this reason, we measured the transmission spectrum of the bright (V∼10.2), large (1.37 RJ), sub-Saturn mass (0.19 MJ) exoplanet WASP-127b across the near-UV to near-infrared wavelength range (0.3–5 μm), using the Hubble and Spitzer Space Telescopes. Our results show a feature-rich transmission spectrum, with absorption from Na, H2O, and CO2, and wavelength-dependent scattering from small-particle condensates. We ran two types of atmospheric retrieval models: one enforcing chemical equilibrium, and the other which fit the abundances freely. Our retrieved abundances at chemical equilibrium for Na, O and C are all super-solar, with abundances relative to solar values of 9+15−6⁠, 16+7−5⁠, and 26+12−9 respectively. Despite giving conflicting C/O ratios, both retrievals gave super-solar CO2 volume mixing ratios, which adds to the likelihood that WASP-127b’s bulk metallicity is super-solar, since CO2 abundance is highly sensitive to atmospheric metallicity. We detect water at a significance of 13.7 σ. Our detection of Na is in agreement with previous ground-based detections, though we find a much lower abundance, and we also do not find evidence for Li or K despite increased sensitivity. In the future, spectroscopy with JWST will be able to constrain WASP-127b’s C/O ratio, and may reveal the formation history of this metal-enriched, highly observable exoplanet

    Collaborative prognostics in Social Asset Networks

    Get PDF
    With the spread of Internet of Things (IoT) technologies, assets have acquired communication, processing and sensing capabilities. In response, the fi eld of Asset Management has moved from fleet-wide failure models to individualised asset prognostics. Individualised models are seldom truly distributed, and often fail to capitalise the processing power of the asset fleet. This leads to hardly scalable machine learning centralised models that often must nd a compromise between accuracy and computational power. In order to overcome this, we present a novel theoretical approach to collaborative prognostics within the Social Internet of Things. We introduce the concept of Social Asset Networks, de ned as networks of cooperating assets with sensing, communicating and computing capabilities. In the proposed approach, the information obtained from the medium by means of sensors is synthesised into a Health Indicator, which determines the state of the asset. The Health Indicator of each asset evolves according to an equation determined by a triplet of parameters. Assets are given the form of the equation but they ignore their parametric values. To obtain these values, assets use the equation in order to perform a non-linear least squares t of their Health Indicator data. Using these estimated parameters, they are interconnected to a subset of collaborating assets by means of a similarity metric. We show how by simply interchanging their estimates, networked assets are able to precisely determine their Health Indicator dynamics and reduce maintenance costs. This is done in real time, with no centralised library, and without the need for extensive historical data. We compare Social Asset Networks with the typical self-learning and fleet-wide approaches, and show that Social Asset Networks have a faster convergence and lower cost. This study serves as a conceptual proof for the potential of collaborative prognostics for solving maintenance problems, and can be used to justify the implementation of such a system in a real industrial fleet.EU H202

    On the Power of Hierarchical Identity-Based Encryption

    Get PDF
    We prove that there is no fully black-box construction of collision-resistant hash functions (CRH) from hierarchical identity-based encryption (HIBE) with arbitrary polynomial number of identity levels. As a corollary we obtain a series of separations showing that none of the primitives implied by HIBE in a black-box way (e.g., IBE, CCA-secure public-key encryption) can be used in a black-box way to construct fully homomorphic encryption or any other primitive that is known to imply CRH in a black-box way. To the best of our knowledge, this is the first limitation proved for the power of HIBE. Our proof relies on the reconstruction paradigm of Gennaro and Trevisan (FOCS 2000) and Haitner et al (FOCS 2007) and extends their techniques for one-way and trapdoor permutations to the setting of HIBE. A technical challenge for our separation of HIBE stems from the adaptivity of the adversary who is allowed to obtain keys for different identities before she selects the attacked identity. Our main technical contribution is to show how to achieve compression/reconstruction in the presence of such adaptive adversaries

    A review of multi-component maintenance models with economic dependence

    Get PDF
    In this paper we review the literature on multi-component maintenance models with economic dependence. The emphasis is on papers that appeared after 1991, but there is an overlap with Section 2 of the most recent review paper by Cho and Parlar (1991). We distinguish between stationary models, where a long-term stable situation is assumed, and dynamic models, which can take information into account that becomes available only on the short term. Within the stationary models we choose a classification scheme that is primarily based on the various options of grouping maintenance activities: grouping either corrective or preventive maintenance, or combining preventive-maintenance actions with corrective actions. As such, this classification links up with the possibilities for grouped maintenance activities that exist in practice

    Assessing the effects of Ang-(1-7) therapy following transient middle cerebral artery occlusion

    Get PDF
    The counter-regulatory axis, Angiotensin Converting Enzyme 2, Angiotensin-(1-7), Mas receptor (ACE2/Ang-1-7/MasR), of the renin angiotensin system (RAS) is a potential therapeutic target in stroke, with Ang-(1-7) reported to have neuroprotective effects in pre-clinical stroke models. Here, an extensive investigation of the functional and mechanistic effects of Ang-(1-7) was performed in a rodent model of stroke. Using longitudinal magnetic resonance imaging (MRI) it was observed that central administration of Ang-(1-7) following transient middle cerebral artery occlusion (MCAO) increased the amount of tissue salvage compared to reperfusion alone. This protective effect was not due to early changes in blood brain barrier (BBB) permeability, microglia activation or inflammatory gene expression. However, increases in NADPH oxidase 1 (Nox1) mRNA expression were observed in the treatment group compared to control. In order to determine whether Ang-(1-7) has direct cerebrovascular effects, laser speckle contrast imaging (LSCI) was performed to measure dynamic changes in cortical perfusion following reperfusion. Delivery of Ang-(1-7) did not have any effect on cortical perfusion following reperfusion however; it showed an indication to prevent the ‘steal phenomenon’ within the contralateral hemisphere. The comprehensive series of studies have demonstrated a moderate protective effect of Ang-(1-7) when given alongside reperfusion to increase tissue salvage

    Retrotransposon-Induced Heterochromatin Spreading in the Mouse Revealed by Insertional Polymorphisms

    Get PDF
    The “arms race” relationship between transposable elements (TEs) and their host has promoted a series of epigenetic silencing mechanisms directed against TEs. Retrotransposons, a class of TEs, are often located in repressed regions and are thought to induce heterochromatin formation and spreading. However, direct evidence for TE–induced local heterochromatin in mammals is surprisingly scarce. To examine this phenomenon, we chose two mouse embryonic stem (ES) cell lines that possess insertionally polymorphic retrotransposons (IAP, ETn/MusD, and LINE elements) at specific loci in one cell line but not the other. Employing ChIP-seq data for these cell lines, we show that IAP elements robustly induce H3K9me3 and H4K20me3 marks in flanking genomic DNA. In contrast, such heterochromatin is not induced by LINE copies and only by a minority of polymorphic ETn/MusD copies. DNA methylation is independent of the presence of IAP copies, since it is present in flanking regions of both full and empty sites. Finally, such spreading into genes appears to be rare, since the transcriptional start sites of very few genes are less than one Kb from an IAP. However, the B3galtl gene is subject to transcriptional silencing via IAP-induced heterochromatin. Hence, although rare, IAP-induced local heterochromatin spreading into nearby genes may influence expression and, in turn, host fitness

    Identifying and Characterizing a Novel Protein Kinase STK35L1 and Deciphering Its Orthologs and Close-Homologs in Vertebrates

    Get PDF
    The human kinome containing 478 eukaryotic protein kinases has over 100 uncharacterized kinases with unknown substrates and biological functions. The Ser/Thr kinase 35 (STK35, Clik1) is a member of the NKF 4 (New Kinase Family 4) in the kinome with unknown substrates and biological functions. Various high throughput studies indicate that STK35 could be involved in various human diseases such as colorectal cancer and malaria. In this study, we found that the previously published coding sequence of the STK35 gene is incomplete. The newly identified sequence of the STK35 gene codes for a protein of 534 amino acids with a N-terminal elongation of 133 amino acids. It has been designated as STK35L (STK35 long). Since it is the first of further homologous kinases we termed it as STK35L1. The STK35L1 protein (58 kDa on SDS-PAGE), but not STK35 (44 kDa), was found to be expressed in all human cells studied (endothelial cells, HeLa, and HEK cells) and was down-regulated after silencing with specific siRNA. EGFP-STK35L1 was localized in the nucleus and the nucleolus. By combining syntenic and gene structure pattern data and homology searches, two further STK35L1 homologs, STK35L2 (previously known as PDIK1L) and STK35L3, were found. All these protein kinase homologs were conserved throughout the vertebrates. The STK35L3 gene was specifically lost during placental mammalian evolution. Using comparative genomics, we have identified orthologous sets of these three protein kinases genes and their possible ancestor gene in two sea squirt genomes. We found the full-length coding sequence of the STK35 gene and termed it as STK35L1. We identified a new third STK35-like gene, STK35L3, in vertebrates and a possible ancestor gene in sea squirt genome. This study will provide a comprehensive platform to explore the role of STK35L kinases in cell functions and human diseases

    The role of reactive oxygen species in apoptosis of the diabetic kidney

    Get PDF
    Increased levels of reactive oxygen species (ROS) by hyperglycemia can induce apoptosis of renal cells and diabetic nephropathy. The redox balance in the renal cell seems, therefore, of the utmost importance. ROS-mediated apoptosis may be further aggravated by an inadequate cytoprotective response against ROS. When there are insufficient cytoprotective and ROS scavenging molecules, ROS lead to considerable cellular damage and to a point of no return in apoptosis. Induction of cytoprotective proteins may prevent or attenuate apoptosis, renal cell injury, and finally diabetic nephropathy. Here, we discuss some mechanisms of apoptosis and several strategies that have been probed to ameliorate, or to prevent apoptosis in the diabetic kidney
    corecore