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Assessing the effects of Ang-(1-7) 
therapy following transient middle 
cerebral artery occlusion
M. M. C. Arroja1, e. Reid1, L. A. Roy1, A. V. Vallatos  1, W. M. Holmes1, s. A. Nicklin  2, 
L. M. Work  2 & C. McCabe  1

The counter-regulatory axis, Angiotensin Converting Enzyme 2, Angiotensin-(1-7), Mas receptor 
(ACE2/Ang-1-7/MasR), of the renin angiotensin system (RAS) is a potential therapeutic target in 
stroke, with Ang-(1-7) reported to have neuroprotective effects in pre-clinical stroke models. Here, 
an extensive investigation of the functional and mechanistic effects of Ang-(1-7) was performed in 
a rodent model of stroke. Using longitudinal magnetic resonance imaging (MRI) it was observed 
that central administration of Ang-(1-7) following transient middle cerebral artery occlusion (MCAO) 
increased the amount of tissue salvage compared to reperfusion alone. This protective effect was not 
due to early changes in blood brain barrier (BBB) permeability, microglia activation or inflammatory 
gene expression. However, increases in NADPH oxidase 1 (Nox1) mRNA expression were observed 
in the treatment group compared to control. In order to determine whether Ang-(1-7) has direct 
cerebrovascular effects, laser speckle contrast imaging (LSCI) was performed to measure dynamic 
changes in cortical perfusion following reperfusion. Delivery of Ang-(1-7) did not have any effect 
on cortical perfusion following reperfusion however; it showed an indication to prevent the ‘steal 
phenomenon’ within the contralateral hemisphere. The comprehensive series of studies have 
demonstrated a moderate protective effect of Ang-(1-7) when given alongside reperfusion to increase 
tissue salvage.

In the UK, more than 152,000 people will suffer a stroke accounting for approximately 40,000 deaths every year1. 
Intravenous (IV) alteplase is the main line of therapy for acute ischaemic stroke, however, its eligibility is limited 
due to the narrow therapeutic time window (<4.5 hr) and safety concerns2. Recently, endovascular thrombec-
tomy has shown to be an effective strategy with an extended therapeutic window (6 to 24 hr post stroke), par-
ticularly in large proximal occlusions3–5. This new line of therapy has reinvigorated the stroke community with 
the possibility of translation of adjunctive therapies alongside recanalisation that can act to increase efficacy of 
these approaches. In the present study, we have investigated the potential of Ang-(1-7) as an adjunctive treatment 
following recanalisation.

The classical axis of the RAS has been widely implicated in ischaemic stroke pathology through becoming 
over-activation of the Angiotensin Converting Enzyme/Angiotensin II/Angiotensin II receptor type I (ACE/Ang 
II/AT1R) arm. The role of the classical RAS axis in ischaemic stroke pathology has been shown in knockout (KO) 
studies where AT1R KO mice exhibited a larger penumbra volume and improved cerebral blood flow (CBF) 
within the ischaemic core and penumbra6. As a result, AT1R antagonists (candesartan, olmesartan, valsartan and 
irbesartan) have been tested and shown to reduce infarct volume, improve perfusion, inhibit BBB breakdown and 
reduce oxidative stress, inflammation and microglia activation following experimental stroke7–11. Moreover, a 
recent study demonstrated that an Ang II vaccine is neuroprotective following ischaemic stroke, thus, suggesting 
that targeting the RAS is a promising therapeutic approach12. While the role of the ACE/AngII/AT1R axis is rela-
tively well established in experimental models of stroke, increasing evidence now suggest that the RAS offers an 
endogenous cerebroprotective mechanism through the activation of the counter-regulatory RAS axis composed 
of ACE2/Ang-(1-7)/MasR.
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Ang-(1-7) is an endogenous constituent of the brain and its receptor Mas is expressed in neurons, endothelial 
cells, astrocytes and microglia13–16. Central administration of Ang-(1-7) has been shown to reduce infarct size in 
rat models of middle cerebral artery occlusion (MCAO), an effect that has been suggested to be mediated at least 
in part by inhibiting central inflammation and maintaining integrity of the BBB as well as being MasR depend-
ent15,17–22. Following transient MCAO, Ang-(1-7) delivery was shown to prevent BBB breakdown by leading to 
tight junction preservation through metalloproteinase 9 (MMP9) downregulation and enhancement of its inhib-
itor, tissue inhibitor of metalloprotease 1 (TIMP1)23. In endothelin-1 (ET-1) induced MCAO, Ang-(1-7) therapy 
attenuated infarct size and neurological deficit due to a proposed reduction in inducible nitric oxide synthase 
(iNOS) at acute stages of injury17. Similarly, in permanent MCAO models, Ang-(1-7) treatment was suggested to 
decrease infarct volume as a result of NF-κB suppression and inhibition of interleukin 1 beta (IL-1β), interleukin 
6 (IL-6) and cyclooxygenase 2 (COX2) expression 24 hr post MCAO19. Ang-(1-7) is hypothesized to exert its 
effects by directly acting on MasR present on microglia at acute stages of injury following MCAO and preventing 
the upregulation of pro-inflammatory mediators IL-6, IL-1β, iNOS and cluster of differentiation 11 b (CD11b) 
whilst stimulating the generation of anti-inflammatory cytokine, interleukin 10 (IL-10)15,18. Additionally, reports 
suggest that Ang-(1-7) may exert pro-angiogenic effects or act through a vasodilatory effect and therefore, lead 
to an increase in CBF following cerebral injury20,24–26. Still, the latter proposed effect is controversial and remains 
elusive17,20.

Although mounting evidence implicates the ACE2/Ang-(1-7)/MasR axis as a potential therapeutic target fol-
lowing ischaemic stroke, the majority of pre-clinical studies have been performed using a permanent model of 
MCAO or the ET-1 induced MCAO model, which results in gradual reperfusion. This is in contrast to the abrupt 
reperfusion that would be observed following endovascular thrombectomy an effect that is mimicked with the 
intraluminal filament model of transient MCAO27. Consequently, the aim of this study was to elucidate the neu-
roprotective potential of Ang-(1-7) as an adjunctive post-stroke therapy at acute and subacute stages of injury 
following transient MCAO. Three broad aims were addressed in order to determine the functional and mech-
anistic effects of Ang-(1-7). Firstly, to investigate the therapeutic potential of post-reperfusion administration 
of Ang-(1-7) on the extent of tissue salvage using MRI. Second, to investigate the effects of Ang-(1-7) on BBB 
breakdown in the acute phase post-stroke using contrast enhanced MRI imaging. Third, to investigate the impact 
of systemic delivery of Ang-(1-7) on the cerebrovascular response post-reperfusion using laser speckle contrast 
imaging (LSCI). Finally, in an attempt to dissect potential mechanisms, gene expression levels for inflammatory/
oxidative stress markers were examined and the effect of Ang-(1-7) on microglia number/activation studied.

Results
Study 1: Mortality & Exclusions. A total of 10 animals died prior to the 7 day end point (6 vehicle and 4 
Ang-(1-7)). From all surviving animals, 10 were excluded from analysis either due to the intracerebroventricular 
(ICV) cannula not being within the cerebral ventricle for drug delivery or an incomplete occlusion of the MCA 
was observed on MR angiography. Furthermore, systolic BP was not obtained for one vehicle animal at 7 days 
post MCAO due to animal stress during the procedure.

Ang-(1-7) treatment increases tissue salvage following reperfusion at 7 days post 
MCAo. Baseline lesion volume for the treatment groups at 60 min post MCAO (prior to treatment starting) 
was: vehicle (artificial cerebrospinal fluid (aCSF)); 171.8 ± 50.8 mm3 and Ang-(1-7); 187.1 ± 67.7 mm3 (Fig. 1a). 
At day 7 post-reperfusion and following treatment infusion, infarct volume significantly decreased for all animals 
in vehicle (aCSF) (130.6 ± 50.7 mm3; P < 0.001) and Ang-(1-7) (111.3 ± 47.4 mm3; P < 0.001) groups (Fig. 1a). 
The extent of lesion variability can be observed in both treatment groups during MCAO as well as the extent of 
decrease following reperfusion. Therefore, to account for the variability observed and examine therapeutic effects 
alongside reperfusion, each animal was used as its own control. This allowed calculation of the extent of tissue 
salvage following reperfusion with/without Ang-(1-7).

Ang-(1-7) along with reperfusion increased the extent of tissue salvage at day 7 when compared to vehi-
cle (41.2 ± 10.2% vs 24.5 ± 14.1% reduction in baseline lesion volume, P < 0.01) (Fig. 1b,c). This outcome was 
independent of any effects of Ang-(1-7) on changes in systolic blood pressure (BP) over the 7 day time course 
(change in systolic BP from baseline to day 7: Vehicle, 15.2 ± 25 mmHg vs Ang-(1-7), 15.58 ± 25 mmHg; P > 0.05) 
(Fig. 1d). Interestingly, when assessing final infarct volume at day 7 only, there were no significant differences 
between Vehicle and Ang-(1-7) groups (130.6 ± 50.7 mm3 vs 111.3 ± 47.4 mm3; P > 0.05) (Fig. 1e). Accordingly, 
there were no differences in neurological deficit at day 7 when assessed by the 18-point neurological score 
(Fig. 1f).

Study 2: Ang-(1-7) does not influence BBB breakdown 24 hr post MCAO. Two animals in the 
vehicle group died 24 hr post MCAO and three rats were excluded due to the ICV cannula not being situated in 
the ventricle for drug infusion. Five animals were excluded from analysis of BBB breakdown due to unsuccessful 
tail vein injection of contrast agent.

The 18-point neurological score at 24 hr post MCAO confirmed neurological deficit in both groups with no 
significant differences observed (Supplementary Fig. 2a). At 24 hr post MCAO; RARE-T2 MRI demonstrated 
significant brain swelling in both groups (Supplementary Fig. 2b). The uptake of gadolinium-diethylenetriamine 
penta-acetic acid (Gd-DTPA) contrast agent was calculated for both groups in order to determine BBB leakage. 
Compared to vehicle (aCSF) treated animals, Ang-(1-7) therapy did not alter Gd-DTPA enhancement volume 
(19.7 ± 8.7 mm3 vs 19.4 ± 7.7 mm3, P > 0.05) (Fig. 2a,b). Similarly, Gd-DTPA enhancement expressed as percent-
age of infarct did not differ amongst groups (Supplementary Fig. 2c). Additionally, Ang-(1-7) did not decrease 
hemispheric swelling compared to control animals (12.2 ± 7.7% vs 10.6 ± 10.1%, P > 0.05) (Fig. 2c). These data 
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Figure 1. Ang-(1-7) treatment for 7 days significantly attenuates lesion growth from 60 min MCAO lesion. (a) 
Ischaemic lesion evolution from 60 min MCAO (prior to therapy) to 7 days post MCAO along with therapy 
for each individual animal in both vehicle (1 μl/hr aCSF; n = 13) and Ang-(1-7) (1.1 nmol/hr; n = 13) treated 
groups. Ischaemic lesion and reperfusion extent varies amongst rats. (b,c) Ang-(1-7) ICV therapy along with 
reperfusion significantly decreases ischaemic lesion evolution from 60 min MCAO to 7 days post MCAO 
compared to vehicle. (d) Therapy effects are independent of systolic BP induced alterations from pre to 7 days 
post MCAO (n = 12–13 per group). (e,f) Final infarct volume or neurological score evaluated at day 7 only did 
not differ amongst groups (n = 13 per group). Data are presented as mean ± S.D; **P < 0.01; ***P < 0.001; 
unpaired Student’s t test.
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Figure 2. Ang-(1-7) does not influence BBB breakdown 24 hr post MCAO. (a,b) Gd-DTPA enhancement 
volume across the ipsilateral hemisphere did not differ between Ang-(1-7) (1.1 nmol/hr; n = 11) and control rats 
(aCSF; n = 12). (c) Ang-(1-7) therapy (n = 15) did not alter hemispheric swelling volume compared to Vehicle 
(aCSF; n = 13). (d) Gene expression levels for BBB breakdown marker, Mmp9, were significantly upregulated 
in MCAO vehicle group (n = 7) and nearly reaching significance in Ang-(1-7) treated rats (n = 7) compared 
to sham rats (n = 6). Ang-(1-7) did not alter Mmp9 mRNA levels compared to vehicle treated rats. (e) Gene 
expression values for Mmp9 inhibitor, Timp1, were significantly upregulated in MCAO groups (n = 7 per 
group) compared to sham animals (n = 6) without Ang-(1-7) induced effects compared to control. (f,g) Ang-
(1-7) ICV therapy (n = 15) for 24 hr did not alter infarct volume in comparison to vehicle treated rats (n = 13). 
Data are presented as mean ± S.D. *P < 0.05; ***P < 0.001; unpaired Student’s t test. Gene expression data were 
compared using one-way ANOVA with Tukey’s posthoc test; *P < 0.05; ***P < 0.001 compared to sham.

https://doi.org/10.1038/s41598-019-39102-8


5Scientific RepoRts |          (2019) 9:3154  | https://doi.org/10.1038/s41598-019-39102-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

demonstrated that at 24 hr post MCAO; the BBB may only be partially open since Gd-DTPA uptake volume was 
small in many animals and much smaller than the T2 weighted infarct.

Ang-(1-7) is suggested to decrease Mmp9, a marker for BBB breakdown, and increase the gene expression of 
its inhibitor, Timp123. Consequently, Mmp9 and Timp1 gene expression levels were evaluated for both MCAO 
treated groups and sham animals in peri-infarct regions (Fig. 2d,e). Compared to sham rats, Mmp9 mRNA lev-
els were significantly enhanced following MCAO in vehicle (aCSF) (−3.1 ± 1.6 vs −5.8 ± 2.0, vehicle vs sham, 
P = 0.04) and although not quite reaching statistical significance, levels were also increased in Ang-(1-7) treated 
rats (−3.3 ± 1.9 vs −5.8 ± 2.0, Ang-(1-7) vs sham, P = 0.053) (Fig. 2d), confirming BBB breakdown. Similarly, 
Timp1 was significantly upregulated compared to sham in both vehicle (2.1 ± 2.5 vs −3.3 ± 0.6, vehicle vs sham, 
P < 0.001) and Ang-(1-7) (3.1 ± 1.9 vs −3.3 ± 0.6, Ang-(1-7) vs sham, P < 0.001) treated animals (Fig. 2e). Ang-
(1-7) treatment did not change infarct volume in comparison to vehicle treated animals (147.6 ± 92.7 mm3 vs 
136.4 ± 91.4 mm3, P > 0.05) (Fig. 2f,g).

At2R and MasR mRNA expression is altered at 7 days following MCAO in the peri-infarct 
regions. AT1R (Fig. 3a), AT2R (Fig. 3b), MasR (Fig. 3c), ACE (Fig. 3d) and ACE2 (Fig. 3e) mRNA levels were 
measured at 24 hr and 7 days post MCAO in peri-infarct brain regions obtained from sham, MCAO-vehicle and 
MCAO-Ang-(1-7) ICV treated rats. AT1R (Atgr1a) levels were comparable to sham at 24 hr and 7 days following 
MCAO in both treatment groups (Fig. 3a) and similarly, AT2R (Agtr2) levels at 24 hr were unchanged (Fig. 3b). 
In contrast, AT2R (Atgr2) expression was significantly upregulated at day 7 following MCAO in vehicle treated 
rats compared to sham (−4.5 ± 1.6 vs −8.0 ± 1.4, P < 0.01) whereas AT2R (Atgr2) levels in Ang-(1-7) treated rats 
were not statistically different between sham and vehicle treated groups (Fig. 3b). At 24 hr post MCAO MasR 
expression was unchanged in both treatment groups when compared to sham treated rats. However, at day 7 post 
MCAO, MasR (Mas1) levels significantly decreased in both vehicle (aCSF) (−4.4 ± 1.0 vs −2.7 ± 0.8, P = 0.02) 
and Ang-(1-7) (−4.2 ± 1.5 vs 2.7 ± 0.8, P = 0.04) treated groups compared to sham treated animals (Fig. 3c). No 
changes in either Ace or Ace2 mRNA levels were detected at 24 hr and 7 days post MCAO when compared to 
sham treated rats (Fig. 3d,e).

Ang-(1-7) significantly attenuates Nox1 mRNA expression at 7 days post MCAO. Given the 
proposed anti-oxidative and anti-inflammatory effects of Ang-(1-7), we investigated mRNA expression levels in 
peri-infarct brain tissue of genes involved in regulating oxidative stress and inflammation (Fig. 4a–h). The oxi-
dative stress markers Nox1 and Nox2 were unchanged when compared to sham treated rats at 24 hr post MCAO 
(Fig. 4a,b). However, at 7 days post MCAO, Nox1 mRNA expression was significantly reduced in vehicle treated 
rats compared to sham (−7.8 ± 1.0 vs −6.5 ± 0.6; P = 0.04) and this reduction was attenuated in Ang-(1-7) treated 
rats (−6.6 ± 1.2 vs −7.8 ± 1.0, Ang-(1-7) vs vehicle; P = 0.03) (Fig. 4a). In contrast, Nox2 levels were unchanged 
at day 7 days post MCAO (Fig. 4b). In terms of markers of inflammation there were no differences between Ang-
(1-7) and vehicle treated rats for Il1b, Il6, Nos2, Itgam (also known as CD11b), Ptgs2 (also known as COX2) or 
nuclear factor κB (NF-κB; (Nfkb1)) at 24 hr or 7 days post MCAO (Fig. 4c–h). Furthermore, Ang-(1-7) did not 
influence mRNA expression for M2 microglia/macrophage type markers C-C motif chemokine 22 (CCL22), 
arginase 1 (Arg1), cluster of differentiation 163 (CD163) or transforming growth factor β1 (TGF-β1) compared 
to vehicle treated animals (Supplementary Fig. 3a–d).

Ang-(1-7) does not alter microglia activation at 24 hr or 7 days post MCAO. IBA1+ microglia 
was assessed in the peri-infarct and homotopic contralateral regions at 24 hr and 7 days post MCAO. Ang-(1-7) 
did not significantly alter total microglia number in the peri-infarct (106.1 ± 36.3 n°/mm2 vs 111.1 ± 45.4 n°/
mm2, P > 0.05) or homotopic contralateral regions (129.0 ± 20.3 n°/mm2 vs 130.6 ± 29.3 n°/mm2, P > 0.05) when 
compared to Vehicle (aCSF) treated rats (Fig. 5a). Similarly, Ang-(1-7) therapy did not influence the % activated 
microglia in the peri-infarct region (86.2 ± 30.8% vs 93.0 ± 11.7%, P > 0.05) or homotopic contralateral regions 
(62.2 ± 2.9% vs 68.3 ± 24.1%, P > 0.05) when compared to control animals (Fig. 5b). Figures 5c,d illustrate the 
IBA1 immunofluorescence from the median rat from each treatment group at 24 hr post MCAO. At day 7 post 
MCAO microglia staining was qualitatively assessed and demonstrated no differences between treatment groups 
(Supplementary Fig. 4a–d).

Study 3: Systemic infusion of Ang-(1-7) attenuates the ‘steal’ phenomenon in the 
non-ischaemic hemisphere following reperfusion. Next, the effects of Ang-(1-7) systemic adminis-
tration on the cerebrovasculature following reperfusion were investigated. Seven rats were excluded: 5 rats failed 
to reperfuse after removal of the filament, 1 rat had a partial occlusion of the middle cerebral artery (MCA) and 1 
rat had excessive bleeding over the skull surface affecting imaging (Supplementary Fig. 5). Infusion of Ang-(1-7) 
had no effect on mean arterial blood pressure (MABP) compared to vehicle rats (Supplementary Fig. 6a) whilst 
PaO2, PaCO2 and pH values were maintained stable amongst animals (Supplementary Table 1).

In the contralateral hemisphere, cerebral perfusion over the first 90 min following reperfusion increased 
by 11.8 ± 8.1% in vehicle treated rats whereas Ang-(1-7) treatment attenuated this increase in perfusion 
(4.6 ± 10.8%). Comparison of the area under the curve (AUC) values (first 90 min post reperfusion) demon-
strated a statistically significant difference between vehicle and Ang-(1-7) treated rats (P = 0.01) (Fig. 6a,b). In 
the ischaemic core, reperfusion led to a marked increase in perfusion in vehicle (dH2O) and Ang-(1-7) treated 
groups peaking at approximately 15 min post reperfusion, 194.6 ± 63.9% vs 233.1 ± 84.6% respectively (Fig. 6c). 
Ang-(1-7) treatment showed a trend to enhance perfusion compared to the control group, however, comparison 
of AUC values indicated that differences were not significant when compared to the vehicle group (P > 0.05). In 
the ischaemic penumbra region of interest (ROI), reperfusion resulted in an increase in perfusion that peaked 
at 15 min, 95.2 ± 42.1% vs 74.1 ± 30.2% for vehicle and Ang-(1-7) groups, respectively. During the course of 
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reperfusion, Ang-(1-7) did not impact ischaemic penumbra perfusion when compared to Vehicle as determined 
by comparison of mean group AUC values (P > 0.05) (Fig. 6d). Furthermore, Ang-(1-7) did not change the fre-
quency of peri-infarct depolarisations (PIDs) following reperfusion compared to control animals (0.5 ± 0.55 vs 
0.2 ± 0.5 (P > 0.05)), (Supplementary Fig. 6b). Overall, Ang-(1-7) did not alter cortical perfusion in ipsilateral 
hemisphere or the incidence of PIDs, however, it attenuated the ‘steal phenomena’ towards the contralateral 
hemisphere.

Figure 3. Ang-(1-7) does not influence RAS mRNA expression at 24 hr or 7 days post MCAO in peri-infarct 
regions. (a) Atgr1a levels were comparable to sham at 24 hr and 7 days post MCAO without Ang-(1-7) treated 
effects. (b) Atgr2 mRNA expression did not alter at 24 hr post MCAO when compared to sham. However, at 
7 days reperfusion, gene expression were significantly upregulated in MCAO-vehicle group. (c) Mas1 was 
comparable to sham levels 24 hr post MCAO; yet, at 7 days post MCAO, levels were significantly downregulated 
in MCAO groups without Ang-(1-7) mediated effects. (d,e) Ace and Ace2 were comparable to sham at 24 hr 
and 7 days post MCAO. Data displays values for sham (n = 6-7); MCAO-Vehicle (aCSF) (n = 7–9) and MCAO-
Ang-(1-7) (n = 7–9) treated rats. Data are presented as mean ± S.D. **P < 0.01 compared to sham; one-way 
ANOVA with Tukey’s posthoc test.

https://doi.org/10.1038/s41598-019-39102-8
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Discussion
In this comprehensive series of studies investigating the role of Ang-(1-7) administration following stroke it 
was demonstrated that: 1. Central administration increases tissue salvage following reperfusion at 7 days post 
MCAO; 2. Ang-(1-7) does not alter early permeability of the BBB or microglia activation at 24 hr post MCAO; 3. 

Figure 4. Ang-(1-7) significantly attenuates Nox1 gene expression to sham levels 7 days post MCAO in peri-
infarct regions. (a) Nox1 was comparable to sham at 24 hr for MCAO-Vehicle and MCAO-Ang-(1-7) treated 
groups. Conversely, at 7 days post MCAO, Nox1 was significantly decreased in MCAO-Vehicle group with 
Ang-(1-7) treatment attenuating the expression to sham levels (P < 0.05). (b) Nox2 expression did not alter at 
24 hr or 7 days post MCAO when compared to sham. (c–h) Il1b, Il6, Nos2, Itgam, Ptgs2 or Nfkb1 expression 
was not influenced by Ang-(1-7) therapy at 24 hr and 7 days post MCAO. Data displays values for sham 
(n = 6–7); MCAO-Vehicle (aCSF) (n = 7–9) and MCAO-Ang-(1-7) (n = 7–9) treated rats. Data are presented 
as mean ± S.D. *P < 0.05 compared to sham; #P < 0.05 compared to MCAO-Vehicle; one-way ANOVA with 
Tukey’s posthoc test.
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Ang-(1-7) administration does not alter brain RAS, inflammatory or oxidative stress gene expression; however 
it attenuates the decrease in Nox1 gene expression and 4. Systemic infusion of Ang-(1-7) attenuates the ‘steal’ 
phenomenon observed following reperfusion in the non-ischaemic hemisphere.

The counter-regulatory RAS axis, ACE2/Ang-(1-7)/MasR, has received recent focus and has been suggested 
to be a potential therapeutic target following ischaemic stroke15,17,19. Here, the therapeutic potential of Ang-(1-7) 
administered following stroke was examined at acute and subacute stages using imaging techniques. The experi-
ments conducted had strict exclusion criteria through the use of MRI that confirmed the following: correct ICV 

Figure 5. Ang-(1-7) therapy has no effect on microglia number or phenotype at 24 hr following MCAO. (a,b) 
Ang-(1-7) ICV therapy (1.1 nmol/hr; n = 5) did not change IBA1+ microglia total number or % activated cells 
within peri-infarct or homotopic contralateral regions 24 hr post MCAO compared to Vehicle (aCSF; n = 6) 
rats. (c,d) Representative images of IBA1+ microglia staining for vehicle and Ang-(1-7) treated median animals 
within the peri-infarct, homotopic contralateral and infarct regions. Line diagrams adapted from The Rat Brain 
in Stereotaxic Coordinates by G. Paxinos and C. Watson, 1998.
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cannula placement for delivery of Ang-(1-7), complete occlusion of the MCA following filament insertion and 
successful recanalisation of the MCA following filament removal.

The use of DWI-MRI immediately following MCAO (60 min) allowed baseline lesion volume during MCAO 
to be calculated prior to reperfusion and/or initiation of treatment. This is important as it allowed us to investigate 
the influence of reperfusion with or without Ang-(1-7) on the change in lesion volume over time within indi-
vidual animals thereby increasing the statistical power of our studies. Interestingly, when assessing final infarct 
volume at day 7, there was no significant effect of Ang-(1-7) treatment when compared to vehicle treatment. 
This likely reflects the inherent variability observed in infarct volume with the transient intraluminal filament 
model of MCAO and highlights the limitations of assessing a single time point in drug studies. One of the major 

Figure 6. Ang-(1-7) IV therapy significantly attenuates cerebral perfusion increase in the contralateral 
hemisphere over time. (a,b) Ang-(1-7) IV infusion therapy (5 nmol/hr; n = 6) significantly attenuated cerebral 
perfusion increase observed in the contralateral hemisphere in control treated animals (dH2O; n = 5) (P < 0.05). 
(c,d) Ang-(1-7) therapy did not change perfusion within the ischaemic core and ischaemic penumbra regions 
during reperfusion. Data were analysed with mean AUC comparisons followed by unpaired Student’s t test; 
*P < 0.05 was deemed as significant. Data are expressed as mean ± S.D. % change from baseline.
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advantages of the present study was the fact that each animal had baseline lesion volume assessed prior to reper-
fusion ± treatment. It was observed that there is considerable variability in the size of lesion during MCAO even 
with confirmation of complete occlusion of the MCA with MR angiography. This may be due inter-animal varia-
bility in the extent of collateral vessel supply28. For all animals, reperfusion at 90 min resulted in a decrease in the 
baseline lesion volume by day 7 with Ang-(1-7) treatment resulting in a greater extent of tissue salvage by day 7 
when compared to vehicle treated animals. These effects were not related to changes in systolic BP over the 7-day 
time course. This supports previous studies that have demonstrated that central administration of Ang-(1-7) 
induces a neuroprotective effect following ischaemic stroke, however, it is the first to investigate the longitudinal 
effects on lesion evolution15,17,19,20.

Neurological score at day 7 was not significantly different between groups an effect not surprising given the 
lack of difference in final infarct volume at day 7. Ang-(1-7) did not lead to any significant improvement in neuro-
logical score as assessed by the Garcia 18-point score. This test focuses on symmetry of movement, spontaneous 
activity and response to touch rather than provide, on its own, a comprehensive assessment of neurological deficit 
and behavioural outcome. In future studies, behavioural tests such as adhesive tape removal or rotarod test may 
provide a more robust evaluation. Regarding infarct volume, previous studies in the ET-1 induced MCAO model 
showed that Ang-(1-7) administered ICV as a pre and post stroke onset therapy led to a 50% reduction in infarct 
volume however these studies measured infarct at a single time point after treatment15,17. In the present study, we 
have demonstrated that Ang-(1-7) treatment resulted in a moderate but significant increase in tissue salvage, an 
effect that would have been missed without longitudinal imaging. This highlights the importance of early DWI 
MRI before treatment when conducting neuroprotective studies in experimental stroke studies in order to avoid 
type I and type II errors29.

At day 7 post MCAO AT1R mRNA expression was unchanged however, AT2R mRNA was upregulated com-
pared to sham while MasR levels were significantly downregulated following MCAO. Importantly, central infu-
sion of Ang-(1-7) following MCAO had no effect on RAS component mRNA expression when compared to 
vehicle treated animals. There is growing evidence that suggests activation of the AT2R following ischaemic stroke 
may have a neuroprotective role and that Ang-(1-7) may be able to act at the AT2R in addition to MasR17,30. In 
this study, Ang-(1-7) did not alter AT2R mRNA levels compared to vehicle or sham animals; however, given pre-
viously published reports, it is possible that Ang-(1-7) may have exerted some of its effects through the AT2R at 
day 7 post MCAO. In future, the use of specific antagonist studies and/or MasR/AT2R KO models would allow 
elucidate the receptor level at which Ang-(1-7) may act at different stages of injury post MCAO.

Recent findings have implicated the ‘classical RAS axis’ in mediating BBB breakdown following MCAO31,32. It 
has been suggested that central administration of Ang-(1-7) can act to preserve the integrity of the BBB at 24 hr 
MCAO by decreasing MMP9 and increasing TIMP1 mRNA and protein expression23. In contrast, we demon-
strated that Ang-(1-7) ICV treatment does not influence BBB breakdown at 24 hr post MCAO nor did it alter 
MMP9 or TIMP1 gene expression. Furthermore, hemispheric swelling, infarct volume and neurological score 
were comparable between MCAO groups, indicating that at 24 hr post MCAO, Ang-(1-7) does not exert a thera-
peutic effect. It is important to note that in the study by Wu and colleagues, Ang-(1-7) prevented BBB disruption 
at lower doses used in the present study (0.5 pmol/hr and 5 pmol/hr ICV doses vs 1.1 nmol/hr) (Wu et al., 2015). 
Thus, one could postulate that a dose dependent effect may exist perhaps with a U-shaped dose response curve. 
Still, we demonstrated that RAS components (i.e receptor and enzyme mRNA expression) were unaltered at 24 hr 
compared to sham operated rats in contrast to day 7 post MCAO. This demonstrates a biphasic expression of RAS 
components following MCAO and may suggest that this system may not be highly involved in cerebral injury at 
24 hr reperfusion.

An interesting feature observed was that the majority of rats display low levels of Gd-DTPA uptake. The BBB 
dynamics are under debate with reports suggesting that BBB breakdown is a continuous and long-lasting mech-
anism33–35 whilst others indicating that the BBB follows a biphasic pattern following MCAO36–38. The present 
study implies that the BBB may follow a biphasic pattern and therefore, the time point selected may not have been 
optimal to examine the treatment effect of Ang-(1-7) on maximal BBB breakdown. Longitudinal experiments 
investigating the impact of Ang-(1-7) on BBB disruption should be performed to identify the appropriate time at 
which maximal barrier disruption occurs and whether this is influenced by treatment.

Currently, the cellular locus at which Ang-(1-7) acts is unknown with some studies suggesting a direct 
anti-inflammatory effect by acting on microglia15,17,18. In contrast, immunohistochemical assessments performed 
here suggest that Ang-(1-7) did not alter IBA1+ microglia activation or number within the contralateral and 
peri-infarct regions at both 24 hr and 7 days post MCAO. Furthermore gene expression for pro-inflammatory M1 
markers iNOS, IL-1β, IL-6, CD11b, NF-κsB and anti-inflammatory M2 markers CCL22, Arg1, CD163, TGF-β1 
were not altered by Ang-(1-7) at the time points assessed. Although it cannot be excluded that Ang-(1-7) may 
exert an anti-inflammatory effect at the microglia level at 72 hr as previously hypothesised17, we propose that 
Ang-(1-7) may exert a neuroprotective effect at subacute stages of injury through Nox1 and/or CBF modulation.

At day 7, Nox1 mRNA levels were decreased in control rats compared to sham; however, this decrease was sig-
nificantly attenuated in Ang-(1-7) treated rats. Previous reports have demonstrated that Nox1 KO mice have sig-
nificantly increased infarct volume following MCAO when compared to wild type (WT) mice39. The role of Nox1 
in mediating neuroprotection following stroke is not well understood. Consequently, further studies should be 
conducted to address its impact following MCAO and a potential Ang-(1-7) effect. A caveat in the present study is 
the lack of protein level confirmation. To test the neurogenesis hypothesis, immunohistochemical co-localisation 
analysis of Nox1 and proliferating cell nuclear antigen antibodies in the peri-infarct region would have to be 
performed in future. Additionally, Nox1/2 activation assays would provide a more accurate method to study the 
effects of Ang-(1-7) on these enzymes.

Apart from its expression in microglia and neurons, the MasR is also present in brain endothelial cells15,40,41. 
The effect of Ang-(1-7) on the cerebrovasculature has been studied with reports suggesting a vasodilatory effect 
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in isolated rat MCA’s42 and vascular coronary vessels43. Concomitantly, in in vivo experiments, Ang-(1-7) ICV 
therapy following transient MCAO was shown to increase the potent vasodilators NO and bradykinin in the 
ischaemic cortex44 whereas in permanent MCAO models, Ang-(1-7) enhanced angiogenesis and CBF within 
the ischaemic penumbra20. In the present study, the use of LSCI allowed us to study cortical cerebral perfusion 
dynamics during MCAO and following reperfusion with a high temporal and spatial resolution45,46. Ang-(1-7) 
was administered immediately following reperfusion as an IV infusion at a dose set 5 times higher than the 
one used in ICV studies to allow cortical perfusion assessment and maximise endothelial cell MasR interaction. 
During reperfusion, it was observed that perfusion within the contralateral hemisphere increased over time in 
vehicle treated animals while Ang-(1-7) infusion significantly attenuated this increase in perfusion. In the clinic, 
it is reported that a shift in blood flow to non-ischaemic areas (‘steal phenomena’) is associated with worsened 
neurological outcome in stroke patients47. In addition, the degree of perfusion enhancement in the contralateral 
hemisphere correlates with the grade of cerebral vessel stenosis48. Ang-(1-7) could be acting by reversing this 
‘steal phenomena’ and thereby maintaining perfusion in the ischaemic hemisphere.

Ang-(1-7) did not significantly increase perfusion within the ischaemic core or ischaemic penumbra ROIs 
in the present study however there was a trend towards increased perfusion within the ischaemic core territory. 
In permanent models, Ang-(1-7) ICV pre-treatment for 4 weeks increased CBF at 1 hour and 24 hr permanent 
MCAO20. Consequently, Ang-(1-7) may act in a cumulative manner and longer, direct treatment schedules might 
be necessary to observe a cerebrovascular effect in the injured ipsilateral hemisphere.

It is important to note that a major limitation with delivery of Ang-(1-7) is the short half-life of 10–20 sec and 
the fact that it must be administered centrally to exert a neuroprotective effect, which is not clinically feasible49–51. 
Furthermore, Ang-(1-7) induced a moderate neuroprotective effect, suggesting that the dose tested may not be 
optimal. Currently, novel cyclic Ang-(1-7) analogues are available and shown to be stable, long-lasting and ACE 
resistant52. Recent evidence indicates that alternative Ang-(1-7) formulations administered orally and following 
ET-1 induced MCAO have the potential to provide neuroprotection53. Therefore, to consider Ang-(1-7) as a 
potential thrombectomy adjuvant therapy following ischaemic stroke, new drug formulations must be tested 
through alternative delivery methods and dose efficacy determined.

In conclusion, this study demonstrates that the RAS is implicated in cerebral injury in a biphasic pattern with 
Ang-(1-7) as a post stroke therapy inducing a mild to moderate neuroprotective effect at 7 days reperfusion. 
Ang-(1-7) did not exert its effect via an anti-inflammatory mechanism nor prevent BBB breakdown at 24 hr 
reperfusion. Instead, it is hypothesised that Ang-(1-7) may exert its effects by enhancing Nox1 expression/or 
CBF modulation after stroke onset. Further studies must be performed to evaluate the therapeutic potential and 
mechanism of action of specific MasR agonists as an adjuvant therapy for thrombectomy procedures.

Materials and Methods
Animals and experimental design. All studies were carried out under a UK Home Office Project License, 
in accordance with the Animals (Scientific Procedures) Act 1986 and approved by the University of Glasgow 
Ethical Review Panel. A total of 97 Male Wistar rats (300–380 g) were obtained from Charles River Laboratories 
(Kent, UK), group housed until experimental day and single housed during recovery periods. Rats had ad libitum  
access to water and standard chow and were maintained in a controlled environment with 12:12 hour light/dark 
cycle and room temperature between 15–25 °C. All animals were randomly allocated to treatment groups through 
a list randomiser (www.random.org) prior to study commencement and investigators were blinded to treat-
ment until data analyses were completed. For all in vivo experiments, sample size calculations were performed 
(Supplementary section). Study outcomes are reported according to the ARRIVE guidelines (http://www.nc3rs.
org.uk/arrive).

Three distinct studies were conducted and the experimental protocols are described in detail in the supple-
mentary section. The studies had the following aims:

•	 Study 1. To determine the effect of reperfusion with or without Ang-(1-7) on the extent of tissue salvage 7 
days following MCAO.

•	 Study 2. To determine the effect of central administration of Ang-(1-7) on early BBB breakdown 24 hr post 
MCAO.

•	 Study 3. To determine whether systemic administration of Ang-(1-7) has any direct effects on the 
cerebrovasculature.

Anaesthesia, analgesia and euthanasia. See supplementary methods.

Middle Cerebral Artery Occlusion. Left MCAO was performed using intraluminal filament model as pre-
viously described54,55. Briefly, an arteriotomy was performed in the common carotid artery and a 4–0 nylon sili-
cone coated tip monofilament (403934PK10 or 404134PK10 depending on rat weight; Doccol Corporation, MA, 
USA) inserted through the internal cerebral artery until it blocked the origin of the MCA. The filament was left in 
place for 90 min after which it was removed to induce reperfusion and animals were recovered from anaesthesia. 
For sham treated animals, vessel isolation was performed; however, the Doccol filament was not introduced.

Intracerebroventricular delivery of Angiotensin-(1-7). Vehicle (aCSF) or Ang-(1-7) (Bachem, 
Switzerland) was administered ICV as a continuous infusion via the implantation of an osmotic pump (Model 
2001, ALZET, USA). A burr hole was drilled on the skull using a dental drill. An MRI compatible ICV cannula 
(PlasticsOne, Virginia, USA) attached to a brain infusion kit (ALZET) was inserted into the lateral ventricle 
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(+1.6 mm lateral & −0.9 mm posterior to Bregma) and glued in place. The osmotic pump connected was inserted 
in a subcutaneous pocket situated posterior to scapulae.

MRI scanning & Image analysis. All MRI data were acquired using a Bruker Pharmascan 7 T system 
(Ettlingen, Germany) equipped with a 4-channel phased array rat brain surface coil and a 72 mm birdcage reso-
nator for brain imaging.

Assessment of lesion volume and extent of tissue salvage. Diffusion Weighted Imaging (DWI) 
(TE = 22 ms, TR = 4 s, matrix = 96 × 96, field of view (FOV) = 25 × 25 mm, B values = 0 & 1,000 s/mm2, 8 con-
tiguous coronal levels, 1.5 mm thickness, spatial resolution = 260 μm) was carried out at 30 & 60 min MCAO 
to generate quantitative apparent diffusion coefficient (ADC) maps and allow assessment of baseline lesion 
volume. Quantitative ADC maps (x10−3 mm2/s) were generated in Paravision 5 software and subsequently 
processed using Image J software. ADC maps were thresholded according to previously published thresholds 
(<0.58 × 10−3 mm2/s) from our group and lesion volume calculated by summing the area multiplied by slice 
thickness (Baskerville et al., 2016). No correction for oedema is necessary at the acute stage post MCAO and this 
was confirmed by measuring hemisphere volumes on ADC images.

RARE T2 weighted sequence (TE = 100 ms, TR = 6,000 ms, matrix = 256 × 256, FOV = 25 × 25 mm, 16 con-
tiguous coronal slices, 0.75 mm slice thickness, in-plane resolution = 98 μm) was carried out for determination 
of infarct volume (24 hr or day 7) and to confirm ICV cannula placement. Infarct volume was calculated by man-
ually delineating the hyperintense regions on T2 weighted images using Image J software. The lesions across the 
16 coronal sections were summed, multipled by slice thickness and corrected for oedema (Gerriets et al., 2004).

For study 1, the extent of tissue salvage following reperfusion with vehicle or Ang-(1-7) treatment was calcu-
lated by expressing the % change in infarct volume at day 7 from the baseline lesion volume at 60 min post MCAO 
in the same rat.

Confirmation of MCAO and reperfusion. During MCAO and at 24 hr and 7 days post-reperfusion, an 
magnetic resonance angiogram (MRA) sequence (TE = 3.8 ms, TR = 15 ms, matrix = 256 × 256, FOV = 4 × 4 mm, 
50 contiguous coronal slices, 0.4 mm slice thickness, spatial resolution of 156 μm) was carried out to confirm 
MCAO and reperfusion. MRA data was visually assessed for the absence and presence of MCA patency.

Assessment of BBB breakdown. To examine BBB breakdown, RARE T1 weighted imaging (TE = 13.5 ms, 
TR = 800 ms, matrix = 256 × 256, FOV = 30 × 30 mm, 8 coronal slices, slice thickness of 1.5 mm, in a plane reso-
lution of 117 μM) was carried out prior to and post Gd-DTPA injection at 5, 10, 15, 20, 25 and 30 min from injec-
tion. RARE-T1 imaging analysis was conducted using an in-house Matlab code (MathWorks Ltd, UK). % signal 
change maps were generated by subtracting MRI-T1 images before and after Gd-DTPA injection and normalising 
to pre-contrast MRI-T1 scan. To determine Gd-DTPA uptake volume (mm3) within the ipsilateral hemisphere, 
the cerebral ventricles were excluded from analysis and a binary mask generated where values below 5 times the 
noise to signal ratio (25%) threshold were set as 0 and values above the threshold set as 1. The voxels defined as 
1 were counted and multiplied by the voxel size to obtain the overall Gd-DTPA uptake brain volume (mm3) for 
each of the 6-time point scans. A final Gd-DTPA uptake volume was obtained by averaging the volumes deter-
mined in each 6-time point % signal change map.

Laser Speckle Contrast Imaging. LSCI was carried out using a PeriCam PSI System (Perimed, Sweden) 
according to manufacturer’s instructions. Speckle patterns were generated and recorded at a frame rate of 10 
images per sec and averaged to produce an effective frame rate of 1 image every 5 sec. LSCI baseline images 
were obtained for a period of 15 min during MCAO (prior to reperfusion) and continued for 90 min following 
reperfusion. For data analysis, perfusion images during MCAO were thresholded according to the mean perfu-
sion in the contralateral hemisphere in order to determine tissue compartments based on perfusion thresholds 
(Supplementary Fig. 1). Perfusion thresholds were set to define ROIs for: 1. ischaemic core (<43% of contralat-
eral baseline perfusion), 2. ischaemic penumbra (43–75% of contralateral baseline perfusion) during MCAO 
& 3. contralateral hemisphere56,57. For each individual ROI the baseline perfusion was calculated over 15 min 
during MCAO and subsequent values were then normalised to the mean signal during baseline. This allowed us 
to calculate the % change in cerebral perfusion following reperfusion with or without treatment. The occurrence 
of peri-infarct depolarisations (PIDs), which resulted in waves of hyperaemia propagating across the cortical 
surface, were observed and counted for each animal.

Statistical analyses. Ischaemic lesion, percentage (%) ischaemic lesion change from MCAO, Gd-DTPA 
enhancement volume, % hemispheric swelling, IBA1+ microglia number/phenotype and systolic BP data were 
compared between treatment groups using unpaired Student’s t test. Gene expression data were compared 
between Sham, MCAO-Vehicle (aCSF) and MCAO-Ang-(1-7) groups using one-way ANOVA with Tukey’s 
post-hoc test. LSCI and MABP data were analysed using area under the curve (AUC) over the course of 90 min 
reperfusion and means compared between groups using unpaired Student’s t test. Neurological score data were 
compared using non-parametric Mann-Whitney test. Data were presented as mean ± S.D, shown as a scatterplot 
and P < 0.05 deemed statistically significant.

Data Availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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