20 research outputs found

    Insight into Recent Progress and Perspectives in Improvement of Antioxidant Machinery upon PGPR Augmentation in Plants under Drought Stress: A Review

    Get PDF
    Agriculture has a lot of responsibility as the rise in the world’s population demands more food requirements. However, more than one type of biotic and abiotic stress continually impacts agricultural productivity. Drought stress is a major abiotic stress that significantly affects agricultural productivity every year as the plants undergo several morphological, biochemical, and physiological modifications, such as repressed root and shoot growth, reduced photosynthesis and transpiration rate, excessive production of reactive oxygen species (ROS), osmotic adjustments, and modified leaf senescence regulating and stress signaling pathways. Such modifications may permanently damage the plants; therefore, mitigation strategies must be developed. The use of drought resistant crop cultivars is more expensive and labor-intensive with few advantages. However, exploiting plant growth promoting rhizobacteria (PGPR) is a proven alternative with numerous direct and indirect advantages. The PGPR confers induced systemic tolerance (IST) mechanisms in plants in response to drought stress via multiple mechanisms, including the alteration of root architecture, maintenance of high relative water content, improvement of photosynthesis rate, production of phytohormones, exopolysaccharides, ACC deaminase, carotenoids and volatiles, induction of antioxidant defense system, and alteration in stress-responsive gene expression. The commercial application of PGPR as bioinoculants or biostimulants will remain contingent on more robust strain selection and performance under unfavorable environmental conditions. This review highlights the possible mechanisms of PGPR by activating the plant adaptive defense systems for enhancing drought tolerance and improving overall growth and yield

    Bioinformatics investigation of the effect of volatile and non-volatile compounds of rhizobacteria in inhibiting late embryogenesis abundant protein that induces drought tolerance

    No full text
    Drought is a major problem worldwide for agriculture, horticulture, and forestry. In many cases, major physiological and biochemical changes occur due to drought stress. The plant’s response to drought stress includes a set of systems for intracellular regulation of gene expression and inter-tissue and inter-organ signaling, which ultimately leads to increased stress tolerance. Meanwhile, the role of plant growth-promoting bacteria in improving many harmful consequences of drought stress has been discussed. One of the new ways to increase tolerance to drought stress in plants is drug design using methods based on computer analysis, bioinformatics, pharmacokinetics, and molecular docking. The present study aimed to identify volatile and non-volatile compounds involved in drought tolerance using molecular docking methods. In this research, among the volatile and non-volatile compounds effective in increasing growth and inducing drought tolerance, compounds that have a high affinity for interacting with the active site of late embryogenesis abundant (LEA) protein were identified through molecular docking methods, and it was presented as a suitable inhibitor for this protein. Based on the docking results, the inhibition potentials of the studied compounds differed, and the most vital interaction in the case of LEA 3 protein was related to the gibberellic acid compound, whose energy is equivalent to −7.78 kcal/mol. Due to the basic understanding of many mechanisms operating in the interactions of plants and bacteria, it is expected that the practical use of these compounds will grow significantly in the coming years, relying on pharmacokinetic methods and molecular docking

    In silico studies evidenced the role of structurally diverse plant secondary metabolites in reducing SARS-CoV-2 pathogenesis

    No full text
    Plants are endowed with a large pool of structurally diverse small molecules known as secondary metabolites. The present study aims to virtually screen these plant secondary metabolites (PSM) for their possible anti-SARS-CoV-2 properties targeting four proteins/ enzymes which govern viral pathogenesis. Results of molecular docking with 4,704 ligands against four target proteins, and data analysis revealed a unique pattern of structurally similar PSM interacting with the target proteins. Among the top-ranked PSM which recorded lower binding energy (BE), > 50% were triterpenoids which interacted strongly with viral spike protein—receptor binding domain, > 32% molecules which showed better interaction with the active site of human transmembrane serine protease were belongs to flavonoids and their glycosides, > 16% of flavonol glycosides and > 16% anthocyanidins recorded lower BE against active site of viral main protease and > 13% flavonol glycoside strongly interacted with active site of viral RNA-dependent RNA polymerase. The primary concern about these PSM is their bioavailability. However, several PSM recorded higher bioavailability score and found fulfilling most of the drug-likeness characters as per Lipinski's rule (Coagulin K, Kamalachalcone C, Ginkgetin, Isoginkgetin, 3,3′-Biplumbagin, Chrysophanein, Aromoline, etc.). Natural occurrence, bio-transformation, bioavailability of selected PSM and their interaction with the target site of selected proteins were discussed in detail. Present study provides a platform for researchers to explore the possible use of selected PSM to prevent/ cure the COVID-19 by subjecting them for thorough in vitro and in vivo evaluation for the capabilities to interfering with the process of viral host cell recognition, entry and replication

    Insight into Recent Progress and Perspectives in Improvement of Antioxidant Machinery upon PGPR Augmentation in Plants under Drought Stress: A Review

    No full text
    Agriculture has a lot of responsibility as the rise in the world’s population demands more food requirements. However, more than one type of biotic and abiotic stress continually impacts agricultural productivity. Drought stress is a major abiotic stress that significantly affects agricultural productivity every year as the plants undergo several morphological, biochemical, and physiological modifications, such as repressed root and shoot growth, reduced photosynthesis and transpiration rate, excessive production of reactive oxygen species (ROS), osmotic adjustments, and modified leaf senescence regulating and stress signaling pathways. Such modifications may permanently damage the plants; therefore, mitigation strategies must be developed. The use of drought resistant crop cultivars is more expensive and labor-intensive with few advantages. However, exploiting plant growth promoting rhizobacteria (PGPR) is a proven alternative with numerous direct and indirect advantages. The PGPR confers induced systemic tolerance (IST) mechanisms in plants in response to drought stress via multiple mechanisms, including the alteration of root architecture, maintenance of high relative water content, improvement of photosynthesis rate, production of phytohormones, exopolysaccharides, ACC deaminase, carotenoids and volatiles, induction of antioxidant defense system, and alteration in stress-responsive gene expression. The commercial application of PGPR as bioinoculants or biostimulants will remain contingent on more robust strain selection and performance under unfavorable environmental conditions. This review highlights the possible mechanisms of PGPR by activating the plant adaptive defense systems for enhancing drought tolerance and improving overall growth and yield

    Repositioning Therapeutics for SARS-CoV-2: Virtual Screening of Plant-based Anti-HIV Compounds as Possible Inhibitors against COVID-19 Viral RdRp

    Get PDF
    Background: Coronavirus disease 2019 (COVID-19) has caused a global pandemic with a high mortality and morbidity rate worldwide. The COVID-19 vaccines that are currently in development or already approved are expected to provide at least some protection against the emerging variants of the virus, but the mutations may reduce the efficacy of the existing vaccines. Purified phytochemicals from medicinal plants provide a helpful framework for discovering new therapeutic leads as they have long been employed in traditional medicine to treat many disorders. Objective: The objectives of the study are to exploit the anti-HIV bioactive compounds against SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) through molecular docking studies and to evaluate the Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) properties of potential compounds. Methods: Molecular docking was performed to study the interaction of ligands with the target sites of RdRp protein (PDB: 6M71) using AutoDock Vina. The ADMET properties of potential compounds were predicted using the pkCSM platform. Results: A total of 151 phytochemicals derived from the medicinal plants with recognized antiviral activity and 18 anti-HIV drugs were virtually screened against COVID-19 viral RdRp to identify putative inhibitors that facilitate the development of potential anti-COVID-19 drug candidates. The computational studies identified 34 compounds and three drugs inhibiting viral RdRp with binding energies ranging from -10.2 to -8.5 kcal/mol. Among them, five compounds, namely Michellamine B, Quercetin 3-O-(2'',6''-digalloyl)-beta-Dgalactopyranoside, Corilagin, Hypericin, and 1,2,3,4,6-Penta-O-galloyl-beta-D-glucose residues, bound efficiently with the binding site of RdRp. Besides, Lopinavir, Maraviroc, and Remdesivir drugs also inhibited SARS-CoV-2 polymerase. In addition, the ADMET properties of top potential compounds were also predicted in comparison to the drugs. Conclusion: The present study suggested that these potential drug candidates can be further subjected to in vitro and in vivo studies that may help develop effective anti-COVID-19 drugs.Fil: Murali, Mahadevamurthy. University of Mysore; IndiaFil: Gowtham, Hittanahallikoppal Gajendramurthy. University of Mysore; IndiaFil: Ansari, Mohammad Azam. Bin Faisal University; Arabia SauditaFil: Alomary, Mohammad N.. King Abdulaziz City for Science and Technology; Arabia SauditaFil: Alghamdi, Saad. Umm Al qura University; Arabia SauditaFil: Almehmadi, Mazen. Taif Universisty; Arabia SauditaFil: Singh, Sudarshana Brijesh. University of Mysore; IndiaFil: Shilpa, Natarajamurthy. University of Mysore; IndiaFil: Aiyaz, Mohammed. University of Mysore; IndiaFil: Kalegowda, Nataraj. University of Mysore; IndiaFil: Ledesma, Ana Estela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Centro de Investigación en Biofísica Aplicada y Alimentos. - Universidad Nacional de Santiago del Estero. Centro de Investigación en Biofísica Aplicada y Alimentos; ArgentinaFil: Amruthesh, Kestur Nagaraj. University of Mysore; Indi

    In Silico Computational Studies of Bioactive Secondary Metabolites from Wedelia trilobata against Anti-Apoptotic B-Cell Lymphoma-2 (Bcl-2) Protein Associated with Cancer Cell Survival and Resistance

    No full text
    In the present study, the binding affinity of 52 bioactive secondary metabolites from Wedelia trilobata towards the anti-apoptotic B-cell lymphoma-2 (Bcl-2) protein (PDB: 2W3L) structure was identified by using in silico molecular docking and molecular dynamics simulation. The molecular docking results demonstrated that the binding energies of docked compounds with Bcl-2 protein ranged from −5.3 kcal/mol to −10.1 kcal/mol. However, the lowest binding energy (−10.1 kcal/mol) was offered by Friedelin against Bcl-2 protein when compared to other metabolites and the standard drug Obatoclax (−8.4 kcal/mol). The molecular dynamics simulations revealed that the Friedelin-Bcl-2 protein complex was found to be stable throughout the simulation period of 100 ns. Overall, the predicted Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) properties of Friedelin are relatively better than Obatoclax, with the most noticeable differences in many parameters where Friedelin has no AMES toxicity, hepatotoxicity, and skin sensitization. The ADMET profiling of selected compounds supported their in silico drug-likeness properties. Based on the computational analyses, the present study concluded that Friedelin of W. trilobata was found to be the potential inhibitor of the Bcl-2 protein, which merits attention for further in vitro and in vivo studies before clinical trials

    <i>In Silico</i> Computational Studies of Bioactive Secondary Metabolites from <i>Wedelia trilobata</i> against Anti-Apoptotic B-Cell Lymphoma-2 (Bcl-2) Protein Associated with Cancer Cell Survival and Resistance

    No full text
    In the present study, the binding affinity of 52 bioactive secondary metabolites from Wedelia trilobata towards the anti-apoptotic B-cell lymphoma-2 (Bcl-2) protein (PDB: 2W3L) structure was identified by using in silico molecular docking and molecular dynamics simulation. The molecular docking results demonstrated that the binding energies of docked compounds with Bcl-2 protein ranged from −5.3 kcal/mol to −10.1 kcal/mol. However, the lowest binding energy (−10.1 kcal/mol) was offered by Friedelin against Bcl-2 protein when compared to other metabolites and the standard drug Obatoclax (−8.4 kcal/mol). The molecular dynamics simulations revealed that the Friedelin-Bcl-2 protein complex was found to be stable throughout the simulation period of 100 ns. Overall, the predicted Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) properties of Friedelin are relatively better than Obatoclax, with the most noticeable differences in many parameters where Friedelin has no AMES toxicity, hepatotoxicity, and skin sensitization. The ADMET profiling of selected compounds supported their in silico drug-likeness properties. Based on the computational analyses, the present study concluded that Friedelin of W. trilobata was found to be the potential inhibitor of the Bcl-2 protein, which merits attention for further in vitro and in vivo studies before clinical trials

    Integrated approach for studying bioactive compounds from Cladosporium spp. against estrogen receptor alpha as breast cancer drug target

    No full text
    Abstract Cladosporium spp. have been reported for their great diversity of secondary metabolites which represent as a prominent base material for verifying the biological activities. Several bioactive compounds which have antimicrobial, cytotoxic, quorum sensing inhibitory and phytotoxic activities have been isolated from Cladosporium species. Most of them are still needed to be explored for their anticancer properties. Therefore, the present study is focused on screening and identifying the bioactive compounds of Cladosporium spp. for their anticancer activity via the integrated approaches of Molecular Docking (MD), Molecular Dynamics Simulation (MDS) and Density Functional Theory (DFT) studies. A total of 123 bioactive compounds of Cladosporium spp. were explored for their binding affinity with the selected breast cancer drug target receptor such as estrogen receptor alpha (PDB:6CBZ). The Molecular Docking studies revealed that amongst the bioactive compounds screened, Altertoxin X and Cladosporol H showed a good binding affinity of − 10.5 kcal/mol and − 10.3 kcal/mol, respectively, with the estrogen receptor alpha when compared to the reference compound (17 \upbeta β -Estradiol: − 10.2 kcal/mol). The MDS study indicated the stable binding patterns and conformation of the estrogen receptor alpha-Altertoxin X complex in a stimulating environment. In addition, in silico absorption, distribution, metabolism, excretion and toxicity (ADMET) study suggested that Altertoxin X has a good oral bioavailability with a high LD 50_{50} 50 value of 2.375 mol/kg and did not cause any hepatotoxicity and skin sensitization. In summary, the integrated approaches revealed that Altertoxin X possesses a promising anticancer activity and could serve as a new therapeutic drug for breast cancer treatment
    corecore