Iranian Journal of Mathematical Sciences and Informatics
Vol. 7, No. 2 (2012), pp 1-8

The Common Neighborhood Graph and Its Energy

Anwar Alwardi ${ }^{a}$, Branko Arsić ${ }^{b}$, Ivan Gutman ${ }^{b, *}$ and Nandappa D. Soner ${ }^{a}$
${ }^{a}$ Department of Studies in Mathematics, University of Mysore, Mysore 570006, India
${ }^{b}$ Faculty of Science, University of Kragujevac, P. O. Box 60, 34000
Kragujevac, Serbia
E-mail: a_wardi@hotmail.com
E-mail: brankoarsic@kg.ac.rs
E-mail: gutman@kg.ac.rs
E-mail: ndsoner@yahoo.co.in

Abstract

Let G be a simple graph with vertex set $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. The common neighborhood graph (congraph) of G, denoted by $\operatorname{con}(G)$, is the graph with vertex set $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, in which two vertices are adjacent if and only they have at least one common neighbor in the graph G. The basic properties of $\operatorname{con}(G)$ and of its energy are established.

Keywords: Common neighborhood graph, Congraph, Spectrum (of graph), Energy (of graph).

2000 Mathematics subject classification: 05C75, 05C50.

1. Introduction

In this paper we are concerned with simple graphs, that is, graphs without multiple, weighted or directed edges, and without self-loops. Let G be such a graph with vertex set $\mathbf{V}=\mathbf{V}(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Thus, the number of vertices G is n.

[^0]The adjacency matrix of the graph G is the symmetric square matrix $\mathbf{A}=$ $\mathbf{A}(G)=\left\|a_{i j}\right\|$ of order n whose (i, j)-entry is defined as [6]

$$
a_{i j}= \begin{cases}1 & \text { if the vertices } v_{i} \text { and } v_{j} \text { are adjacent } \tag{1.1}\\ 0 & \text { otherwise } .\end{cases}
$$

The eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ of \mathbf{A} are the (ordinary) eigenvalues of the graph G and form the (ordinary) spectrum of $G[6]$.

A much studied spectrum-based invariant of graphs is the energy, defined as

$$
\begin{equation*}
E(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right| . \tag{1.2}
\end{equation*}
$$

Details on the theory of graph energy can be found in the reviews [9, 12] and elsewhere [1, 2].

For $i \neq j$, the common neighborhood of the the vertices v_{i} and v_{j}, denoted by $\Gamma\left(v_{i}, v_{j}\right)$, is the set of vertices, different from v_{i} and v_{j}, that are adjacent to both v_{i} and v_{j}. In a recent paper [3], a new graph matrix $\mathbf{C N}=\mathbf{C N}(G)=\left\|\gamma_{i j}\right\|$ was considered, named common-neighborhood matrix whose (i, j)-entry was defined as

$$
\gamma_{i j}= \begin{cases}\left|\Gamma\left\{v_{i}, v_{j}\right\}\right| & \text { if } i \neq j \tag{1.3}\\ 0 & \text { otherwise } .\end{cases}
$$

Recall that the diagonal elements of $\mathbf{C N}$ are all equal to zero. The off-diagonal elements assume integer values between 0 and $n-2$. Only in some exceptional cases is $\mathbf{C N}$ related to the adjacency matrix [3]; for example, $\mathbf{C N}\left(K_{n}\right)=$ $(n-2) \mathbf{A}\left(K_{n}\right)$.

Bearing in mind Eqs. (1.1) and (1.3), as a sort of compromise we now introduce a symmetric square matrix $\left\|a_{i j}^{\prime}\right\|$ of order n, whose (i, j)-entry is defined as

$$
a_{i j}^{\prime}= \begin{cases}1 & \text { if }\left|\Gamma\left\{v_{i}, v_{j}\right\}\right| \geq 1 \text { and } i \neq j \tag{1.4}\\ 0 & \text { otherwise } .\end{cases}
$$

Evidently, this matrix can be viewed as the adjacency matrix of some graph. We call it the common neighborhood graph or, shorter, the congraph of the graph G, and denote it by $\operatorname{con}(G)$.

In the following section we establish properties of the congraphs, and in the next section properties of their energy.

At this point it should be noted that in two earlier works [5, 4] the so-called derived graph G^{\dagger} of the graph G was considered. The derived graph G^{\dagger} has the same vertex set as the parent graph G, and two vertices of G^{\dagger} are adjacent if and only if their distance in G is equal to two.

It is immediately seen that $G^{\dagger} \cong \operatorname{con}(G)$ if and only if the parent graph G does not contain triangles. Thus, in particular, $G^{\dagger} \cong \operatorname{con}(G)$ holds whenever G is bipartite.

2. Properties of common neighborhood graphs

Denote by $G_{1} \cup G_{2}$ the graph consisting of (disconnected) components G_{1} and G_{2}. Denote by \bar{G} the complement of the graph G. As usual, P_{n}, C_{n}, and K_{n}, are the n-vertex path, cycle, and complete graph. In addition, $K_{a, b}$ is the complete bipartite graph on $a+b$ vertices. Recall that $K_{1, n-1}$ is called the star and often denoted by S_{n}. The following simple relations can easily be verified.

Example 2.1.

$$
\begin{align*}
\operatorname{con}\left(K_{n}\right) & \cong K_{n} \tag{2.1}\\
\operatorname{con}\left(\overline{K_{n}}\right) & \cong \overline{K_{n}} \tag{2.2}\\
\operatorname{con}\left(P_{n}\right) & \cong P_{\lfloor n / 2\rfloor} \cup P_{\lceil n / 2\rceil} \tag{2.3}\\
\operatorname{con}\left(K_{a, b}\right) & \cong K_{a} \cup K_{b} \tag{2.4}
\end{align*}
$$

and

$$
\operatorname{con}\left(C_{n}\right) \cong \begin{cases}C_{n} & \text { if } n \text { is odd and } n \geq 3 \tag{2.5}\\ P_{2} \cup P_{2} & \text { if } n=4 \\ C_{n / 2} \cup C_{n / 2} & \text { if } n \text { is even and } n \geq 6\end{cases}
$$

As a special case of Eq. (2.4) we have $\operatorname{con}\left(S_{n}\right) \cong K_{n-1} \cup K_{1}$.
Since, evidently,

$$
\begin{equation*}
\operatorname{con}\left(G_{1} \cup G_{2}\right) \cong \operatorname{con}\left(G_{1}\right) \cup \operatorname{con}\left(G_{2}\right) \tag{2.6}
\end{equation*}
$$

it is seen that the congraph of a disconnected graph is necessarily disconnected. We, however, have a somewhat stronger claim:

Theorem 2.2. The common neighborhood $\operatorname{graph} \operatorname{con}(G)$ is connected if and only if the parent graph G is connected and non-bipartite.

Proof. In view of Eq. (2.6), we only need to consider the case when the parent graph G is connected.
Case 1: G is connected bipartite. Assume that the vertex set of G is parti-
 belong to either \mathbf{V}_{1} or \mathbf{V}_{2}.

Let $x, y \in \mathbf{V}_{1}$. Since G is connected, there exists a path in G, connecting x and y. Let $\left(x, v_{1}, v_{2}, \ldots, v_{p}, y\right)$ be such a path. Since G is bipartite, p must be odd. Therefore in $\operatorname{con}(G)$ the vertex x is adjacent to v_{2} (because v_{1} is their common neighbor), v_{2} is adjacent to v_{4} (because v_{3} is their common
neighbor), \ldots, v_{p-1} is adjacent to y (because v_{p} is their common neighbor). Thus $\left(x, v_{2}, v_{4}, \ldots, v_{p-1}, y\right)$ is a path in $\operatorname{con}(G)$, connecting the vertices x and y. Therefore x and y belong to the same component of $\operatorname{con}(G)$.

In an analogous manner, if $x, y \in \mathbf{V}_{2}$, then these two vertices belong to the same component of $\operatorname{con}(G)$.

Let now $x \in \mathbf{V}_{1}$ and $y \in \mathbf{V}_{2}$. Then these two vertices cannot be adjacent in $\operatorname{con}(G)$. Namely, if x and y were adjacent in $\operatorname{con}(G)$, then there would exist a vertex z adjacent to both x and y in G. Then z could not belong to either \mathbf{V}_{1} or \mathbf{V}_{2}, which is impossible.

Therefore, no pair of vertices x, y such that $x \in \mathbf{V}_{1}$ and $y \in \mathbf{V}_{2}$ is adjacent in $\operatorname{con}(G)$. Consequently, the vertices from \mathbf{V}_{1} belong to one, and those from \mathbf{V}_{2} to another component of $\operatorname{con}(G)$.

Case 2: G is connected non-bipartite. Then G possesses an odd cycle, and by Eq. (2.5) this cycle is contained also in $\operatorname{con}(G)$. Let y and y^{\prime} be two adjacent vertices of the odd cycle of G, and let x be any other vertex of G. Since G is connected, there exists a path $\left(x, v_{1}, v_{2}, \ldots, v_{p}, y\right)$ in G, connecting x and y. This time p may be either odd or even. If p is odd, than by the same reasoning as above we conclude that there is a path in $\operatorname{con}(G)$, connecting x and y. If p is even, then in an analogous manner there is a path in $\operatorname{con}(G)$, connecting x and y^{\prime}. Thus all vertices of $\operatorname{con}(G)$ belong to the same component, i. e., $\operatorname{con}(G)$ is connected.

Corollary 2.3. If G is a connected bipartite graph, then con (G) has exactly two components.

Theorem 2.4. If G is connected, then $\operatorname{con}(G)$ is bipartite if and only if $G \cong$ $C_{4 k}, k \geq 1$ or $G \cong P_{n}$.

Proof. That the congraphs of $C_{4 k}$ and P_{n} are bipartite is seen from Eqs. (2.3) and (2.5). If G is the cycle whose size is not divisible by 4 , then by (2.5) its congraph is non-bipartite. Any other connected graph possesses a vertex x whose degree is three or greater. This vertex x implies the existence of $\binom{3}{2}$ or more pairs of vertices in G having x as a common neighbor, i. e., $\binom{3}{2}$ or more mutually adjacent vertices in $\operatorname{con}(G)$. Consequently, con (G) possesses triangles and is thus not bipartite.

Corollary 2.5. con (G) cannot be a connected bipartite graph. In particular, con (G) cannot be a tree.

Corollary 2.6. If G is connected, and $\operatorname{con}(G)$ is a forest, then $\operatorname{con}(G) \cong$ $P_{\lfloor n / 2\rfloor} \cup P_{\lceil n / 2\rceil} i$. e., either $G \cong C_{4}$ or $G \cong P_{n}$.

For $v_{i} \in \mathbf{V}(G)$ by d_{i} we denote the degree ($=$ number of first neighbors) of v_{i}. Then $d_{1}, d_{2}, \ldots, d_{n}$ is said to be the degree sequence of the graph G. For details on degree sequences see $[7,17]$ and the references cited therein.

Theorem 2.7. If G has degree sequence $d_{1}, d_{2}, \ldots, d_{n}$, and m is the number of edges of $\operatorname{con}(G)$, then

$$
\begin{equation*}
m \leq \sum_{i=1}^{n}\binom{d_{i}}{2} \tag{2.7}
\end{equation*}
$$

and equality holds if and only if G is quadrangle-free.
Proof. Let $v_{i} \in \mathbf{V}(G)$ and let d_{i} be the degree (= number of first neighbors) of v_{i}. Then v_{i} is a common neighbor of exactly $\binom{d_{i}}{2}$ pairs of vertices. The upper bound follows.

Equality in (2.7) will be violated if and only if in G there exists a pair of vertices, say x and y, having more than one common neighbor. Let z^{\prime} and $z^{\prime \prime}$ be two common neighbors of x and y. Then $x, z^{\prime}, y, z^{\prime \prime}$ form a quadrangle. Thus, if G possesses at least one quadrangle, then the inequality (2.7) is strict.

For the considerations that follow it is important to note that a congraph possesses much less structural information than the parent graph. In particular, there exist numerous pairs and larger families of graph, whose congraphs are isomorphic. We point out here a few such examples.

Example 2.8. (a) Let no component of the graph G has more than two vertices, i. e., $G \cong \alpha K_{2} \cup \beta K_{1}$, for any non-negative integers α and β such that $2 \alpha+\beta=$ n. Then $\operatorname{con}(G) \cong \overline{K_{n}}, c f$. Eq. (2.2).
(b) By Eqs. (2.5) and (2.6) we have for any $k \geq 1, \operatorname{con}\left(C_{4 k+2}\right) \cong \operatorname{con}\left(C_{2 k+1} \cup\right.$ $\left.C_{2 k+1}\right) \cong C_{2 k+1} \cup C_{2 k+1}$.
(c) $\operatorname{con}\left(K_{a+b}\right) \cong \operatorname{con}\left(\overline{K_{a, b}}\right) \cong \operatorname{con}\left(K_{a} \cup K_{b}\right) \cong K_{a} \cup K_{b}$, cf. Eq. (2.4).
(d) A strongly regular graph with parameters (n, k, s, t) is a k-regular graph with n vertices, such that any two adjacent vertices have s common neighbors, and any two non-adjacent vertices have t common neighbors. The congraph of any strongly regular graph with $s>0$ is the complete graph K_{n}.

With regard to Example 2.8 (d) it is interesting to note the following:
Lemma 2.9. If G is a strongly regular graph with parameters (n, k, s, t) and if $s=0$, then $\operatorname{con}(G)=\bar{G}$.

Proof. If $s=0$ then it must be $t>0$ since otherwise the graph G would be edgeless. Because $s=0$, any two vertices adjacent in G are not adjacent in $\operatorname{con}(G)$. Because $t>0$, any two vertices not adjacent in G are adjacent in $\operatorname{con}(G)$.

Corollary 2.10. If G is a strongly regular graph with parameters ($n, k, 0, t$), then con (G) is a strongly regular graph with parameters $(n, n-k-1, n-2 k+$ $t-2, n-2 k)$.

3. Energy of common neighborhood graphs

In this section we are concerned with the energy of congraphs. This energy is calculated by means of Eq. (1.2), with the only difference that instead of the eigenvalues of the graph G we use the eigenvalues of $\operatorname{con}(G)$. By this, and by taking into account the properties of congraphs established in the preceding section, the numerous results known for graph energy [9, 12] can be straightforwardly applied to the energy of congraphs.

First we note that the energy of a congraph may be greater than, smaller than, or equal to the energy of the parent graph. This is illustrated by the following simple examples.

Example 3.1.

$$
\begin{array}{ll}
E\left(P_{4}\right)=2 \sqrt{5} & ; \\
E\left(K_{1,3}\right)=2 \sqrt{3} & ; \\
E\left(\operatorname{con}\left(P_{4}\right)\right)=E\left(P_{2} \cup P_{2}\right)=2+2=4 \\
E\left(C_{6}\right)=8 & ; \\
E\left(\operatorname{con}\left(C_{6}\right)\right)=E\left(C_{3} \cup C_{3}\right)=4+4=8
\end{array}
$$

A graph G on n vertices is said to be hypoenergetic $[13,11,10]$ if $E(G)<n$.
Claim 3.2. There exist hypoenergetic congraphs of connected graphs. In particular, $\operatorname{con}(G)$ is hypoenergetic if $G \cong P_{1}, P_{2}, P_{3}, P_{5}, P_{6}$. We deem that this list may be complete.

Claim 3.3. There exist congraphs of connected graphs with property $E(\operatorname{con}(G))=$ n. Such are the congraphs of $C_{4}, C_{8}, P_{4}, K_{1,3}$. We deem that this list may be complete.

The energy of the complete graph K_{n} is equal to $2(n-1)$. Therefore, by Eq. (2.1) the energy of $\operatorname{con}\left(K_{n}\right)$ is also equal to $2(n-1)$. An n-vertex graph G is said to be hyperenergetic [8, 16] if $E(G)>E\left(K_{n}\right)$. Details on hyperenergetic graphs can be found in the review [10].

Finding hyperenergetic congraphs is not an easy task. This, for instance, is seen from Example 2.8 (d), according to which no strongly regular graph with parameters $(n, k, s, t), s>0$ is hyperenergetic. Recall that just these strongly regular graphs have the greatest possible energy among all n-vertex graphs [15, 14, 19].

We, nevertheless, established the following:
Claim 3.4. There exist hyperenergetic congraphs.
In fact, we established a result much stronger than Claim 3.4:
Theorem 3.5. The congraphs of all strongly regular graphs with parameters ($n, k, 0, t$), except of C_{5}, are hyperenergetic.

Proof. By direct calculation we first check that $\operatorname{con}\left(C_{5}\right) \cong C_{5}$ is not hyperenergetic.

Let G be any strongly regular graph with parameters $(n, k, 0, t)$. Thus G is triangle-free. Let the eigenvalues of G be k, ρ, and σ, such that σ is the negative eigenvalue. Let their multiplicities be $1, f$, and g, respectively. Then, in view of Corollary 2.10, the eigenvalues of $\operatorname{con}(G)$ are $n-k-1, \rho^{\prime}$, and σ^{\prime} with multiplicities $1, f^{\prime}$, and g^{\prime}, respectively, where

$$
\begin{aligned}
\rho^{\prime} & =-(\sigma+1) \\
\sigma^{\prime} & =-(\rho+1) \\
f^{\prime} & =g \\
g^{\prime} & =f .
\end{aligned}
$$

From the spectral theory of strongly regular graphs $[6,18]$ it is known that

$$
\rho=\frac{1}{2}\left[-t+\sqrt{t^{2}-4(k-t)}\right] \quad ; \quad \sigma=\frac{1}{2}\left[-t-\sqrt{t^{2}-4(k-t)}\right] .
$$

The energy of $\operatorname{con}(G)$ is given by

$$
E(\operatorname{con}(G))=(n-k-1)+g \rho^{\prime}+f\left|\sigma^{\prime}\right|
$$

and since $(n-k-1)+g \rho^{\prime}+f \sigma^{\prime}=0$, we have $f\left|\sigma^{\prime}\right|=n-k-1+g \rho^{\prime}$ which implies

$$
\begin{equation*}
E(\operatorname{con}(G))=2 f\left|\sigma^{\prime}\right| \tag{3.1}
\end{equation*}
$$

The congraph of G will be hyperenergetic if $E(\operatorname{con}(G))>2(n-1)=2(f+g)$. Hence from Eq. (3.1) we get

$$
\begin{equation*}
f\left(\left|\sigma^{\prime}\right|-1\right)>g \tag{3.2}
\end{equation*}
$$

Since $\sigma^{\prime}=-(\rho+1)$, and $|-(\rho+1)|=\rho+1$, we can write the condition (3.2) as

$$
\begin{equation*}
f \rho>g \tag{3.3}
\end{equation*}
$$

Two cases need to be distinguished: either $f=g$ or $f \neq g$. In the former case G is a conference graph [18]. The only triangle-free conference graph is C_{5} which is not hyperenergetic. If $f \neq g$, then there are exactly six strongly regular graphs without triangles [18], and these all satisfy the inequality (3.3).

Acknowledgments. B. A. and I. G. thank the Serbian Ministry of Science and Education for support through Grant No. 174033. All authors thank the referees for helpful comments.

References

[1] C. Adiga and Z. Khoshbakht, I. Gutman, More graphs whose energy exceeds the number of vertices, Iranian Journal of Mathematical Sciences and Informatics, 2(2), (2007), 5762.
[2] S. Alikhani and M. A. Iranmanesh, Energy of graphs, matroids and Fibonacci numbers, Iranian Journal of Mathematical Sciences and Informatics, 5(2), (2010), 55-60.
[3] A. Alwardi, N. D. Soner and I. Gutman, On the common-neighborhood energy of a graph, Bull. Acad. Serbe Sci. Arts (Cl. Sci. Math. Natur.), 143, (2011), 49-59.
[4] S. K. Ayyaswamy, S. Balachandran and I. Gutman, On second-stage spectrum and energy of a graph, Kragujevac J. Math., 34, (2010), 139-146.
[5] S. K. Ayyaswamy, S. Balachandran and K. Kannan, Bounds on the second stage spectral radius of graphs, Int. J. Math. Sci., 1, (2009), 223-226.
[6] D. Cvetković, M. Doob and H. Sachs, Spectra of Graphs - Theory and Application, Barth, Heidelberg, 1995.
[7] T. Došlić, B. Furtula, A. Graovac, I. Gutman, S. Moradi and Z. Yarahmadi, On vertex-degree-based molecular structure descriptors, MATCH Commun. Math. Comput. Chem., 66, (2011), 613-626.
[8] I. Gutman, Hyperenergetic molecular graphs, J. Serb. Chem. Soc., 64, (1999), 199-205.
[9] I. Gutman, The energy of a graph: Old and new results, in: A. Betten, A. Kohnert, R. Laue and A. Wassermann (Eds.), Algebraic Combinatorics and Applications, Springer, Berlin, 2001, pp. 196-211.
[10] I. Gutman, Hyperenergetic and hypoenergetic graphs, in: D. Cvetković and I. Gutman (Eds.), Selected Topics on Applications of Graph Spectra, Math. Inst., Belgrade, 2011, pp. 113-135.
[11] I. Gutman, X. Li, Y. Shi and J. Zhang, Hypoenergetic trees, MATCH Commun. Math. Comput. Chem., 60, (2008), 415-426.
[12] I. Gutman, X. Li and J. Zhang, Graph energy, in: M. Dehmer and F. Emmert-Streib (Eds.), Analysis of Complex Networks. From Biology to Linguistics, Wiley-VCH, Weinheim, 2009, pp. 145-174.
[13] I. Gutman and S. Radenković, Hypoenergetic molecular graphs, Indian J. Chem., 46A, (2007), 1733-1736.
[14] W. H. Haemers, Strongly regular graphs with maximal energy, Lin. Algebra Appl., 429, (2008), 2719-2723.
[15] J. Koolen and V. Moulton, Maximal energy graphs, Adv. Appl. Math., 26, (2001), 47-52.
[16] J. H. Koolen, V. Moulton, I. Gutman and D. Vidović, More hyperenergetic molecular graphs, J. Serb. Chem. Soc., 65, (2000), 571-575.
[17] S. Sedghi, N. Shobe and M. A. Salahshoor, The polynomials of a graph, Iranian Journal of Mathematical Sciences and Informatics, 3(2), (2008), 55-67.
[18] J. J. Seidel, Strongly regular graphs, in: B. Bollobás (Ed.), Surveys in Combinatorics, Cambridge Univ. Press, Cambridge, 1979, pp. 157-180.
[19] T. Tamizh Chelvam, S. Raja and I. Gutman, Strongly regular integral circulant graphs and their energies, Bull. Int. Math. Virt. Inst., 2, (2012), 9-16.

[^0]: * Corresponding Author

 Received 19 March 2012; Accepted 15 May 2012 (C)2012 Academic Center for Education, Culture and Research TMU

