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Abstract. Let G be a simple graph with vertex set {v1, v2, . . . , vn}. The

common neighborhood graph (congraph) of G, denoted by con(G), is the

graph with vertex set {v1, v2, . . . , vn}, in which two vertices are adjacent

if and only they have at least one common neighbor in the graph G. The

basic properties of con(G) and of its energy are established.
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1. Introduction

In this paper we are concerned with simple graphs, that is, graphs without

multiple, weighted or directed edges, and without self–loops. Let G be such

a graph with vertex set V = V(G) = {v1, v2, . . . , vn}. Thus, the number of

vertices G is n.
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The adjacency matrix of the graph G is the symmetric square matrix A =

A(G) = ||aij || of order n whose (i, j)-entry is defined as [6]

aij =

⎧⎪⎨
⎪⎩

1 if the vertices vi and vj are adjacent

0 otherwise .

(1.1)

The eigenvalues λ1, λ2, . . . , λn of A are the (ordinary) eigenvalues of the

graph G and form the (ordinary) spectrum of G [6].

A much studied spectrum–based invariant of graphs is the energy, defined

as

E(G) =

n∑
i=1

|λi| . (1.2)

Details on the theory of graph energy can be found in the reviews [9, 12] and

elsewhere [1, 2].

For i �= j, the common neighborhood of the the vertices vi and vj , denoted by

Γ(vi, vj), is the set of vertices, different from vi and vj , that are adjacent to both

vi and vj . In a recent paper [3], a new graph matrix CN = CN(G) = ||γij ||
was considered, named common–neighborhood matrix whose (i, j)-entry was

defined as

γij =

⎧⎪⎨
⎪⎩

|Γ{vi, vj}| if i �= j

0 otherwise .

(1.3)

Recall that the diagonal elements of CN are all equal to zero. The off-diagonal

elements assume integer values between 0 and n− 2. Only in some exceptional

cases is CN related to the adjacency matrix [3]; for example, CN(Kn) =

(n− 2)A(Kn).

Bearing in mind Eqs. (1.1) and (1.3), as a sort of compromise we now

introduce a symmetric square matrix ||a′ij || of order n, whose (i, j)-entry is

defined as

a′ij =

⎧⎪⎨
⎪⎩

1 if |Γ{vi, vj}| ≥ 1 and i �= j

0 otherwise .

(1.4)

Evidently, this matrix can be viewed as the adjacency matrix of some graph.

We call it the common neighborhood graph or, shorter, the congraph of the

graph G, and denote it by con(G).

In the following section we establish properties of the congraphs, and in the

next section properties of their energy.

At this point it should be noted that in two earlier works [5, 4] the so-called

derived graph G† of the graph G was considered. The derived graph G† has

the same vertex set as the parent graph G, and two vertices of G† are adjacent

if and only if their distance in G is equal to two.
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It is immediately seen that G† ∼= con(G) if and only if the parent graph G

does not contain triangles. Thus, in particular, G† ∼= con(G) holds whenever

G is bipartite.

2. Properties of common neighborhood graphs

Denote by G1 ∪ G2 the graph consisting of (disconnected) components G1

and G2. Denote by G the complement of the graph G. As usual, Pn , Cn , and

Kn , are the n-vertex path, cycle, and complete graph. In addition, Ka,b is the

complete bipartite graph on a+b vertices. Recall that K1,n−1 is called the star

and often denoted by Sn . The following simple relations can easily be verified.

Example 2.1.

con(Kn) ∼= Kn (2.1)

con(Kn) ∼= Kn (2.2)

con(Pn) ∼= P�n/2� ∪ P�n/2� (2.3)

con(Ka,b) ∼= Ka ∪Kb (2.4)

and

con(Cn) ∼=

⎧⎪⎪⎨
⎪⎪⎩

Cn if n is odd and n ≥ 3

P2 ∪ P2 if n = 4

Cn/2 ∪ Cn/2 if n is even and n ≥ 6 .

(2.5)

As a special case of Eq. (2.4) we have con(Sn) ∼= Kn−1 ∪K1 .

Since, evidently,

con(G1 ∪G2) ∼= con(G1) ∪ con(G2) (2.6)

it is seen that the congraph of a disconnected graph is necessarily disconnected.

We, however, have a somewhat stronger claim:

Theorem 2.2. The common neighborhood graph con(G) is connected if and

only if the parent graph G is connected and non-bipartite.

Proof. In view of Eq. (2.6), we only need to consider the case when the parent

graph G is connected.

Case 1: G is connected bipartite. Assume that the vertex set of G is parti-

tioned as V(G) = V1 ∪V2 , V1 ∩V2 = ∅, so that no two adjacent vertices

belong to either V1 or V2.

Let x, y ∈ V1. Since G is connected, there exists a path in G, connecting

x and y. Let (x, v1, v2, . . . , vp, y) be such a path. Since G is bipartite, p must

be odd. Therefore in con(G) the vertex x is adjacent to v2 (because v1 is

their common neighbor), v2 is adjacent to v4 (because v3 is their common
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neighbor), . . . , vp−1 is adjacent to y (because vp is their common neighbor).

Thus (x, v2, v4, . . . , vp−1, y) is a path in con(G), connecting the vertices x and

y. Therefore x and y belong to the same component of con(G).

In an analogous manner, if x, y ∈ V2, then these two vertices belong to the

same component of con(G).

Let now x ∈ V1 and y ∈ V2 . Then these two vertices cannot be adjacent

in con(G). Namely, if x and y were adjacent in con(G), then there would exist

a vertex z adjacent to both x and y in G. Then z could not belong to either

V1 or V2, which is impossible.

Therefore, no pair of vertices x, y such that x ∈ V1 and y ∈ V2 is adjacent

in con(G). Consequently, the vertices from V1 belong to one, and those from

V2 to another component of con(G).

Case 2: G is connected non-bipartite. Then G possesses an odd cycle, and by

Eq. (2.5) this cycle is contained also in con(G). Let y and y′ be two adjacent

vertices of the odd cycle of G, and let x be any other vertex of G. Since G

is connected, there exists a path (x, v1, v2, . . . , vp, y) in G, connecting x and y.

This time p may be either odd or even. If p is odd, than by the same reasoning

as above we conclude that there is a path in con(G), connecting x and y. If p is

even, then in an analogous manner there is a path in con(G), connecting x and

y′. Thus all vertices of con(G) belong to the same component, i. e., con(G) is

connected. �

Corollary 2.3. If G is a connected bipartite graph, then con(G) has exactly

two components.

Theorem 2.4. If G is connected, then con(G) is bipartite if and only if G ∼=
C4k , k ≥ 1 or G ∼= Pn .

Proof. That the congraphs of C4k and Pn are bipartite is seen from Eqs. (2.3)

and (2.5). If G is the cycle whose size is not divisible by 4, then by (2.5) its

congraph is non-bipartite. Any other connected graph possesses a vertex x

whose degree is three or greater. This vertex x implies the existence of
(
3
2

)
or

more pairs of vertices in G having x as a common neighbor, i. e.,
(
3
2

)
or more

mutually adjacent vertices in con(G). Consequently, con(G) possesses triangles

and is thus not bipartite. �

Corollary 2.5. con(G) cannot be a connected bipartite graph. In particular,

con(G) cannot be a tree.

Corollary 2.6. If G is connected, and con(G) is a forest, then con(G) ∼=
P�n/2� ∪ P�n/2� i. e., either G ∼= C4 or G ∼= Pn.

For vi ∈ V(G) by di we denote the degree (= number of first neighbors) of

vi . Then d1, d2, . . . , dn is said to be the degree sequence of the graph G. For

details on degree sequences see [7, 17] and the references cited therein.
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Theorem 2.7. If G has degree sequence d1, d2, . . . , dn, and m is the number

of edges of con(G), then

m ≤
n∑

i=1

(
di
2

)
(2.7)

and equality holds if and only if G is quadrangle-free.

Proof. Let vi ∈ V(G) and let di be the degree (= number of first neighbors) of

vi. Then vi is a common neighbor of exactly
(
di

2

)
pairs of vertices. The upper

bound follows.

Equality in (2.7) will be violated if and only if in G there exists a pair of

vertices, say x and y, having more than one common neighbor. Let z′ and z′′ be
two common neighbors of x and y. Then x, z′, y, z′′ form a quadrangle. Thus,

if G possesses at least one quadrangle, then the inequality (2.7) is strict. �

For the considerations that follow it is important to note that a congraph

possesses much less structural information than the parent graph. In particular,

there exist numerous pairs and larger families of graph, whose congraphs are

isomorphic. We point out here a few such examples.

Example 2.8. (a) Let no component of the graph G has more than two vertices,

i. e., G ∼= αK2∪βK1 , for any non-negative integers α and β such that 2α+β =

n. Then con(G) ∼= Kn, cf. Eq. (2.2).

(b) By Eqs. (2.5) and (2.6) we have for any k ≥ 1, con(C4k+2) ∼= con(C2k+1 ∪
C2k+1) ∼= C2k+1 ∪ C2k+1 .

(c) con(Ka+b) ∼= con(Ka,b) ∼= con(Ka ∪Kb) ∼= Ka ∪Kb , cf. Eq. (2.4).

(d) A strongly regular graph with parameters (n, k, s, t) is a k-regular graph with

n vertices, such that any two adjacent vertices have s common neighbors, and

any two non-adjacent vertices have t common neighbors. The congraph of any

strongly regular graph with s > 0 is the complete graph Kn .

With regard to Example 2.8 (d) it is interesting to note the following:

Lemma 2.9. If G is a strongly regular graph with parameters (n, k, s, t) and

if s = 0, then con(G) = G.

Proof. If s = 0 then it must be t > 0 since otherwise the graph G would be

edgeless. Because s = 0, any two vertices adjacent in G are not adjacent in

con(G). Because t > 0, any two vertices not adjacent in G are adjacent in

con(G). �

Corollary 2.10. If G is a strongly regular graph with parameters (n, k, 0, t),

then con(G) is a strongly regular graph with parameters (n, n− k− 1, n− 2k+

t− 2, n− 2k).
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3. Energy of common neighborhood graphs

In this section we are concerned with the energy of congraphs. This energy

is calculated by means of Eq. (1.2), with the only difference that instead of

the eigenvalues of the graph G we use the eigenvalues of con(G). By this,

and by taking into account the properties of congraphs established in the pre-

ceding section, the numerous results known for graph energy [9, 12] can be

straightforwardly applied to the energy of congraphs.

First we note that the energy of a congraph may be greater than, smaller

than, or equal to the energy of the parent graph. This is illustrated by the

following simple examples.

Example 3.1.

E(P4) = 2
√
5 ; E(con(P4)) = E(P2 ∪ P2) = 2 + 2 = 4

E(K1,3) = 2
√
3 ; E(con(K1,3)) = E(K3 ∪K1) = 4 + 0 = 4

E(C6) = 8 ; E(con(C6)) = E(C3 ∪ C3) = 4 + 4 = 8

A graph G on n vertices is said to be hypoenergetic [13, 11, 10] if E(G) < n.

Claim 3.2. There exist hypoenergetic congraphs of connected graphs. In par-

ticular, con(G) is hypoenergetic if G ∼= P1, P2, P3, P5, P6. We deem that this

list may be complete.

Claim 3.3. There exist congraphs of connected graphs with property E(con(G)) =

n. Such are the congraphs of C4, C8, P4,K1,3. We deem that this list may be

complete.

The energy of the complete graph Kn is equal to 2(n−1). Therefore, by Eq.

(2.1) the energy of con(Kn) is also equal to 2(n− 1). An n-vertex graph G is

said to be hyperenergetic [8, 16] if E(G) > E(Kn). Details on hyperenergetic

graphs can be found in the review [10].

Finding hyperenergetic congraphs is not an easy task. This, for instance, is

seen from Example 2.8 (d), according to which no strongly regular graph with

parameters (n, k, s, t) , s > 0 is hyperenergetic. Recall that just these strongly

regular graphs have the greatest possible energy among all n-vertex graphs

[15, 14, 19].

We, nevertheless, established the following:

Claim 3.4. There exist hyperenergetic congraphs.

In fact, we established a result much stronger than Claim 3.4:

Theorem 3.5. The congraphs of all strongly regular graphs with parameters

(n, k, 0, t), except of C5 , are hyperenergetic.
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Proof. By direct calculation we first check that con(C5) ∼= C5 is not hyperen-

ergetic.

Let G be any strongly regular graph with parameters (n, k, 0, t). Thus G

is triangle–free. Let the eigenvalues of G be k, ρ, and σ, such that σ is the

negative eigenvalue. Let their multiplicities be 1, f , and g, respectively. Then,

in view of Corollary 2.10, the eigenvalues of con(G) are n − k − 1, ρ′, and σ′

with multiplicities 1, f ′, and g′, respectively, where

ρ′ = −(σ + 1)

σ′ = −(ρ+ 1)

f ′ = g

g′ = f .

From the spectral theory of strongly regular graphs [6, 18] it is known that

ρ =
1

2

[
− t+

√
t2 − 4(k − t)

]
; σ =

1

2

[
− t−

√
t2 − 4(k − t)

]
.

The energy of con(G) is given by

E(con(G)) = (n− k − 1) + gρ′ + f |σ′|
and since (n− k − 1) + gρ′ + fσ′ = 0, we have f |σ′| = n − k − 1 + gρ′ which
implies

E(con(G)) = 2f |σ′| . (3.1)

The congraph of G will be hyperenergetic if E(con(G)) > 2(n− 1) = 2(f + g).

Hence from Eq. (3.1) we get

f(|σ′| − 1) > g (3.2)

Since σ′ = −(ρ+ 1), and | − (ρ+ 1)| = ρ+ 1, we can write the condition (3.2)

as

fρ > g . (3.3)

Two cases need to be distinguished: either f = g or f �= g. In the former case G

is a conference graph [18]. The only triangle–free conference graph is C5 which

is not hyperenergetic. If f �= g, then there are exactly six strongly regular

graphs without triangles [18], and these all satisfy the inequality (3.3). �
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[6] D. Cvetković, M. Doob and H. Sachs, Spectra of Graphs – Theory and Application,

Barth, Heidelberg, 1995.
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