94 research outputs found

    The exponentiated Hencky strain energy in modelling tire derived material for moderately large deformations

    Full text link
    This work presents a hyper-viscoelastic model based on the Hencky-logarithmic strain tensor to model the response of a Tire Derived Material (TDM) undergoing moderately large deformations. TDM is a composite made by cold forging a mix of rubber fibers and grains, obtained by grinding scrap tires, and polyurethane binder. The mechanical properties are highly influenced by the presence of voids associated with the granular composition and low tensile strength due to the weak connection at the grain-matrix interface. For these reasons, TDM use is restricted to applications concerning a limited range of deformations. Experimental tests show that a central feature of the response is connected to highly nonlinear behavior of the material under volumetric deformation which conventional hyperelastic models fail in predicting. The strain energy function presented here is a variant of the exponentiated Hencky strain energy proposed by Neff et al., which for moderate strains is as good as the quadratic Hencky model and in the large strain region improves several important features from a mathematical point of view. The proposed form of the exponentiated Hencky energy possesses a set of parameters uniquely determined in the infinitesimal strain regime and an orthogonal set of parameters to determine the nonlinear response. The hyperelastic model is additionally incorporated in a finite deformation viscoelasticity framework that accounts for the two main dissipation mechanisms in TDMs, one at the microscale level and one at the macroscale level. The model is capable of predicting different deformation modes in a certain range of frequency and amplitude with a unique set of parameters with most of them having a clear physical meaning. Moreover, by comparing the predictions from the proposed constitutive model with experimental data we conclude that the new constitutive model gives accurate prediction

    A micro-mechanically based continuum model for strain-induced crystallization in natural rubber

    Get PDF
    AbstractRecent experimental results show that strain-induced crystallization can substantially improve the crack growth resistance of natural rubber. While this might suggest superior designs of tires or other industrial applications where elastomers are used, a more thorough understanding of the underlying physics of strain-induced crystallization in natural rubber has to be developed before any design process can be started. The objective of this work is to develop a computationally-accessible micro-mechanically based continuum model, which is able to predict the macroscopic behavior of strain crystallizing natural rubber. While several researchers have developed micro-mechanical models of partially crystallized polymer chains, their results mainly give qualitative agreement with experimental data due to a lack of good micro–macro transition theories or the lack of computational power. However, recent developments in multiscale modeling in polymers give us new tools to continue this early work. To begin with, a micro-mechanical model of a constrained partially crystallized polymer chain with an extend-chain crystal is derived and connected to the macroscopic level using the non-affine micro-sphere model. Subsequently, a description of the crystallization kinetics is introduced using an evolution law based on the gradient of the macroscopic free energy function (chemical potential) and a simple threshold function. Finally a numerical implementation of the model is proposed and its predictive performance assessed using published data

    Aryne cycloaddition reaction as a facile and mild modification method for design of electrode materials for high-performance symmetric supercapacitor

    Get PDF
    Covalent modification of graphene-based materials can be considered as one of the most promising methods for tailoring their electrochemical properties and extending their application as electrode materials for supercapacitors. In this contribution, we report a facile and mild approach for the covalent functionalization of reduced graphene oxide (rGO) via aryne cycloaddition using pseudocyclic iodoxoborole as an aryne source. The structure and chemical composition of the functionalized rGO (f-rGO) were assessed by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), ultraviolet-visible (UV-vis) absorption spectrophotometry, Raman spectroscopy and X-ray photoelectron spectroscopy (XPS), which revealed the negligible influence of covalent modification on the rGO structure. Transmission electron microscopy (TEM) imaging showed an increase of the interlayer distance from 0.38 to 0.46 nm upon functionalization. The electrochemical performance of f-rGO material was studied by cyclic voltammetry (CV), galvanostatic chargedischarge (GCD) and electrochemical impedance spectroscopy (EIS) techniques in 2 M KOH aqueous solution as the electrolyte. Under optimized conditions, the f-rGO displayed a high specific capacitance of 297 F g-1 at a current density of 1 A g-1, which is much higher than that of unmodified rGO (170 F g-1 at 1 A g-1). The results obtained in the present study highlight the importance of graphene functionalization as an effective route to fabricate rGO-based materials with enhanced properties in energy storage devices

    Integrated MEMS metrology device using complementary measuring combs

    Get PDF
    The present invention provides a device for in-situ monitoring of material, process and dynamic properties of a MEMS device. The monitoring device includes a pair of comb drives, a cantilever suspension comprising a translating shuttle operatively connected with the pair of comb drives, structures for applying an electrical potential to the comb drives to displace the shuttle, structures for measuring an electrical potential from the pair of comb drives; measuring combs configured to measure the displacement of the shuttle, and structures for measuring an electrical capacitance of the measuring combs. Each of the comb drives may have differently sized comb finger gaps and a different number of comb finger gaps. The shuttle may be formed on two cantilevers perpendicularly disposed with the shuttle, whereby the cantilevers act as springs to return the shuttle to its initial position after each displacement

    Hybrid Simulation Theory for Continuous Beams

    Full text link
    Hybrid simulation is an experimental technique involving the integration of a physical system and a computational system with the use of actuators and sensors. This method has a long history in the experimental community and has been used for nearly 40 years. However, there is a distinct lack of theoretical research on the performance of this method. Hybrid simulation experiments are performed with the implicit assumption of an accurate result as long as sensor and actuator errors are minimized. However, no theoretical results confirm this intuition nor is it understood how minimal the error should be and what the essential controlling factors are. To address this deficit in knowledge, this study considers the problem as one of tracking the trajectory of a dynamical system in a suitably defined configuration space. To make progress, the study strictly considers a theoretical hybrid system. This allows for precise definitions of errors during hybrid simulation. As a model system, the study looks at an elastic beam as well as a viscoelastic beam. In both cases, systems with a continuous distribution of mass are considered as occur in real physical systems. Errors in the system are then tracked during harmonic excitation using space-time L2-norms defined over the system's configuration space. A parametric study is then presented of how magnitude and phase errors in the control system relate to the performance of hybrid simulation. It is seen that there are sharp sensitivities to control system errors. Further, the existence of unacceptably high errors whenever the excitations exceed the system's fundamental frequency is shown to be present in hybrid simulation

    Hybrid simulation theory for a classical nonlinear dynamical system

    Full text link
    Hybrid simulation is an experimental and computational technique which allows one to study the time evolution of a system by physically testing a subset of it while the remainder is represented by a numerical model that is attached to the physical portion via sensors and actuators. The technique allows one to study large or complicated mechanical systems while only requiring a subset of the complete system to be present in the laboratory. This results in vast cost savings as well as the ability to study systems that simply can not be tested due to scale. However, the errors that arise from splitting the system in two requires careful attention, if a valid simulation is to be guaranteed. To date, efforts to understand the theoretical limitations of hybrid simulation have been restricted to linear dynamical systems. In this work we consider the behavior of hybrid simulation when applied to nonlinear dynamical systems. As a model problem, we focus on the damped, harmonically-driven nonlinear pendulum. This system offers complex nonlinear characteristics, in particular periodic and chaotic motions. We are able to show that the application of hybrid simulation to nonlinear systems requires a careful understanding of what one expects from such an experiment. In particular, when system response is chaotic we advocate the need for the use of multiple metrics to characterize the difference between two chaotic systems via Lyapunov exponents and Lyapunov dimensions, as well as correlation exponents. When system response is periodic we advocate the use of L2 norms. Further, we are able to show that hybrid simulation can falsely predict chaotic or periodic response when the true system has the opposite characteristic. In certain cases, we are able to show that control system parameters can mitigate this issue
    • …
    corecore