40 research outputs found

    Haplogroup heterogeneity of LHON patients carrying the m.14484T>C mutation in India

    Get PDF
    Purpose: To investigate the clinical and mitochondrial DNA (mtDNA) haplogroup background of Indian Leber Hereditary Optic Neuropathy (LHON) patients carrying the m.14484T>C mutation. Methods: Detailed clinical investigation and complete mtDNA sequencing analysis was carried out for eight Indian LHON families with the m.14484T>C mutation. Haplogroup was constructed based on the evolutionarily important mtDNA variants. Results: In the present study, we characterized eight unrelated probands selected from 187 LHON cases. The overall penetrance of the disease was estimated to be 19.75% (16/81) in eight pedigrees with the m.14484T>C mutation and showed substantially higher sex bias (male:female = 13:3). The mtDNA haplogrouping revealed that they belong to diverse haplogroups; i.e. F1c1, M31a, U2a, M*, I1, M6, M3a1 and R30a. Interestingly, we did not find an association of the m.14484T>C mutation with any specific haplogroup within the Indian population. We also did not find any secondary mutation(s) in these pedigrees, which might affect the clinical expression of LHON. Conclusions: Contrary to earlier reports showing preferential association of the m.14484T>C mutation with western Eurasian haplogroup J and increased clinical penetrance when present in J1 subhaplogroup background, the present study shows that m.14484T>C arose independently in a different mtDNA haplogroup and ethnic background in India, which may influence the clinical expression of the disease

    Reconstructing the demographic history of the Himalayan and adjoining populations

    Get PDF
    The rugged topography of the Himalayan region has hindered large-scale human migrations, population admixture and assimilation. Such complexity in geographical structure might have facilitated the existence of several small isolated communities in this region. We have genotyped about 850,000 autosomal markers among 35 individuals belonging to the four major populations inhabiting the Himalaya and adjoining regions. In addition, we have genotyped 794 individuals belonging to 16 ethnic groups from the same region, for uniparental (mitochondrial and Y chromosomal DNA) markers. Our results in the light of various statistical analyses suggest a closer link of the Himalayan and adjoining populations to East Asia than their immediate geographical neighbours in South Asia. Allele frequency-based analyses likely support the existence of a specific ancestry component in the Himalayan and adjoining populations. The admixture time estimate suggests a recent westward migration of populations living to the East of the Himalaya. Furthermore, the uniparental marker analysis among the Himalayan and adjoining populations reveal the presence of East, Southeast and South Asian genetic signatures. Interestingly, we observed an antagonistic association of Y chromosomal haplogroups O3 and D clines with the longitudinal distance. Thus, we summarise that studying the Himalayan and adjoining populations is essential for a comprehensive reconstruction of the human evolutionary and ethnolinguistic history of eastern Eurasia

    Origin and spread of human mitochondrial DNA haplogroup U7

    Get PDF
    Human mitochondrial DNA haplogroup U is among the initial maternal founders in Southwest Asia and Europe and one that best indicates matrilineal genetic continuity between late Pleistocene hunter-gatherer groups and present-day populations of Europe. While most haplogroup U subclades are older than 30 thousand years, the comparatively recent coalescence time of the extant variation of haplogroup U7 (~16–19 thousand years ago) suggests that its current distribution is the consequence of more recent dispersal events, despite its wide geographical range across Europe, the Near East and South Asia. Here we report 267 new U7 mitogenomes that – analysed alongside 100 published ones – enable us to discern at least two distinct temporal phases of dispersal, both of which most likely emanated from the Near East. The earlier one began prior to the Holocene (~11.5 thousand years ago) towards South Asia, while the later dispersal took place more recently towards Mediterranean Europe during the Neolithic (~8 thousand years ago). These findings imply that the carriers of haplogroup U7 spread to South Asia and Europe before the suggested Bronze Age expansion of Indo-European languages from the Pontic-Caspian Steppe region

    Neuromuscular disease genetics in under-represented populations: increasing data diversity

    Get PDF
    Neuromuscular diseases (NMDs) affect ∼15 million people globally. In high income settings DNA-based diagnosis has transformed care pathways and led to gene-specific therapies. However, most affected families are in low-to-middle income countries (LMICs) with limited access to DNA-based diagnosis. Most (86%) published genetic data is derived from European ancestry. This marked genetic data inequality hampers understanding of genetic diversity and hinders accurate genetic diagnosis in all income settings. We developed a cloud-based transcontinental partnership to build diverse, deeply-phenotyped and genetically characterized cohorts to improve genetic architecture knowledge, and potentially advance diagnosis and clinical management. We connected 18 centres in Brazil, India, South Africa, Turkey, Zambia, Netherlands and the UK. We co-developed a cloud-based data solution and trained 17 international neurology fellows in clinical genomic data interpretation. Single gene and whole exome data were analysed via a bespoke bioinformatics pipeline and reviewed alongside clinical and phenotypic data in global webinars to inform genetic outcome decisions. We recruited 6001 participants in the first 43 months. Initial genetic analyses ‘solved’ or ‘possibly solved’ ∼56% probands overall. In-depth genetic data review of the four commonest clinical categories (limb girdle muscular dystrophy, inherited peripheral neuropathies, congenital myopathy/muscular dystrophies and Duchenne/Becker muscular dystrophy) delivered a ∼59% ‘solved’ and ∼13% ‘possibly solved’ outcome. Almost 29% of disease causing variants were novel, increasing diverse pathogenic variant knowledge. Unsolved participants represent a new discovery cohort. The dataset provides a large resource from under-represented populations for genetic and translational research. In conclusion, we established a remote transcontinental partnership to assess genetic architecture of NMDs across diverse populations. It supported DNA-based diagnosis, potentially enabling genetic counselling, care pathways and eligibility for gene-specific trials. Similar virtual partnerships could be adopted by other areas of global genomic neurological practice to reduce genetic data inequality and benefit patients globally

    Mitochondrial disorders: challenges in diagnosis & treatment

    Get PDF
    Mitochondrial dysfunctions are known to be responsible for a number of heterogenous clinical presentations with multi-systemic involvement. Impaired oxidative phosphorylation leading to a decrease in cellular energy (ATP) production is the most important cause underlying these disorders. Despite significant progress made in the field of mitochondrial medicine during the last two decades, the molecular mechanisms underlying these disorders are not fully understood. Since the identification of first mitochondrial DNA (mtDNA) mutation in 1988, there has been an exponential rise in the identification of mtDNA and nuclear DNA mutations that are responsible for mitochondrial dysfunction and disease. Genetic complexity together with ever widening clinical spectrum associated with mitochondrial dysfunction poses a major challenge in diagnosis and treatment. Effective therapy has remained elusive till date and is mostly efficient in relieving symptoms. In this review, we discuss the important clinical and genetic features of mitochondrials disorders with special emphasis on diagnosis and treatment

    Automated Urban Travel Interpretation: A Bottom-up Approach for Trajectory Segmentation

    No full text
    Understanding travel behavior is critical for an effective urban planning as well as for enabling various context-aware service provisions to support mobility as a service (MaaS). Both applications rely on the sensor traces generated by travellers’ smartphones. These traces can be used to interpret travel modes, both for generating automated travel diaries as well as for real-time travel mode detection. Current approaches segment a trajectory by certain criteria, e.g., drop in speed. However, these criteria are heuristic, and, thus, existing approaches are subjective and involve significant vagueness and uncertainty in activity transitions in space and time. Also, segmentation approaches are not suited for real time interpretation of open-ended segments, and cannot cope with the frequent gaps in the location traces. In order to address all these challenges a novel, state based bottom-up approach is proposed. This approach assumes a fixed atomic segment of a homogeneous state, instead of an event-based segment, and a progressive iteration until a new state is found. The research investigates how an atomic state-based approach can be developed in such a way that can work in real time, near-real time and offline mode and in different environmental conditions with their varying quality of sensor traces. The results show the proposed bottom-up model outperforms the existing event-based segmentation models in terms of adaptivity, flexibility, accuracy and richness in information delivery pertinent to automated travel behavior interpretation

    Evaluation of serum magnesium levels among type 2 diabetes individuals of a South Indian town

    No full text
    Background: Studies have reported that hypomagnesemia could play an essential role in the development of endothelial dysfunction and altered insulin function, particularly among type 2 diabetes mellitus (T2DM). To assess the incidence of hypomagnesemia among patients with T2DM and compare them with healthy individuals. Materials and Methods: One hundred types 2 diabetic patients admitted to the general medicine outpatient Department at Government Erode Medical College Hospital, Perundurai, were recruited. Biochemical parameters and serum magnesium were assessed at admission and compared with the 100 healthy controls without T2DM. Results: Cases and controls had mean ages of 50.39 ± 9.76 and 50.01 ± 10.15 years, respectively. The age range of 41–50 had the highest percentage of patients (42%). The gender distribution was the same for both cases and controls, with 70% of men and 30% of women. Between cases and controls, the mean fasting blood sugar levels were 102.42 ± 11.16 mg/dl and 91.93 ± 4.32 mg/dl, respectively. Conclusion: Hypomagnesemia is a common problem in adults with T2DM, and we did find a significant association between Mg levels and T2DM in Erode district, Tamil Nadu

    Co-occurrence of m.1555A>G and m.11778G>A mitochondrial DNA mutations in two Indian families with strikingly different clinical penetrance of leber hereditary optic neuropathy

    No full text
    Background: Mitochondrial DNA (mtDNA) mutations are known to cause Leber Hereditary Optic Neuropathy (LHON). However, the co-occurrence of double pathogenic mutations with different pathological significance in pedigrees is a rare event. Methods: Detailed clinical investigation and complete mtDNA sequencing analysis was performed for two Indian families with LHON. The haplogroup was constructed based on evolutionarily important mtDNA variants. Results: We observed the existence of double pathogenic mutations (m.11778G>A and m.1555A>G) in two Indian LHON families, who are from different haplogroup backgrounds (M5a and U2e1), with different clinical penetrance of the disease (visual impairment). The m.11778G>A mutation in the MT-ND4 gene is associated primarily with LHON; whereas, m.1555A>G in the 12S rRNA gene has been reported with aminoglycoside-induced non-syndromic hearing loss. Conclusions: The absence of hearing abnormality and widely varying clinical expression of LHON suggest additional nuclear modifier genes, environmental factors and population heterogeneity might play an important role in the expression of visual impairment in these families

    Periodontitis: possible role of mitochondrial DNA mutations

    No full text
    Periodontal diseases are inflammatory disorders that give rise to tissue damage and loss, as a result of complex interactions between pathogenic bacteria and the host's immune response. There is an increasing body of evidence available to implicate Reactive Oxygen Species (ROS) in the pathogenesis of a variety of inflammatory disorders, of which periodontal disease is no exception. Mammalian cells can generate ROS by different biologic mechanisms, such as mitochondrial respiratory chain and Polymorphonuclear (PMN) activation in inflammation. It might be expected that ROS-mediated damage to mitochondria may inactivate electron transport complexes or inhibit mtDNA transcription thereby altering normal mitochondrial function. Any cellular insult that leads to disruption of the electron transport chain could lead to an increase in mitochondrial-generated ROS which may lead to the destruction of extracellular matrix components as seen in periodontitis. As there is no comprehensive study on the impact of mtDNA mutations in Periodontotitis, this study was initiated to understand the possible association of mtDNA in causing Periodontitis
    corecore