97 research outputs found

    Coordination of chemical analyses under the European Human Biomonitoring Initiative (HBM4EU): Concepts, procedures and lessons learnt

    Get PDF
    The European Human Biomonitoring Initiative (HBM4EU) ran from 2017 to 2022 with the aim of advancing and harmonizing human biomonitoring in Europe. More than 40,000 analyses were performed on human samples in different human biomonitoring studies in HBM4EU, addressing the chemical exposure of the general population, temporal developments, occupational exposure and a public health intervention on mercury in populations with high fish consumption. The analyses covered 15 priority groups of organic chemicals and metals and were carried out by a network of laboratories meeting the requirements of a comprehensive quality assurance and control system. The coordination of the chemical analyses included establishing contacts between sample owners and qualified laboratories and monitoring the progress of the chemical analyses during the analytical phase, also addressing status and consequences of Covid-19 measures. Other challenges were related to the novelty and complexity of HBM4EU, including administrative and financial matters and implementation of standardized procedures. Many individual contacts were necessary in the initial phase of HBM4EU. However, there is a potential to develop more streamlined and standardized communication and coordination in the analytical phase of a consolidated European HBM programme.This study was part of the HBM4EU project receiving funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 733032. The co-funding of the HBM4EU partner countries is gratefully acknowledged. The authors thank all sample owners and qualified laboratories for the excellent collaboration. The authors also acknowledge the HBM4EU partners in charge of upstream (WP7, WP8) and downstream (WP10) processes for the smooth connections with the analytical phase.S

    Glyphosate and AMPA in human urine of HBM4EU-aligned studies: part B adults

    Get PDF
    Within HBM4EU, human biomonitoring (HBM) studies measuring glyphosate (Gly) and aminomethylphosphonic acid (AMPA) in urine samples from the general adult population were aligned and quality-controlled/assured. Data from four studies (ESB Germany (2015-2020); Swiss HBM4EU study (2020); DIET-HBM Iceland (2019-2020); ESTEBAN France (2014-2016)) were included representing Northern and Western Europe. Overall, median values were below the reported quantification limits (LOQs) (0.05-0.1 microg/L). The 95th percentiles (P95) ranged between 0.24 and 0.37 microg/L urine for Gly and between 0.21 and 0.38 microg/L for AMPA. Lower values were observed in adults compared to children. Indications exist for autonomous sources of AMPA in the environment. As for children, reversed dosimetry calculations based on HBM data in adults did not lead to exceedances of the ADI (proposed acceptable daily intake of EFSA for Gly 0.1 mg/kg bw/day based on histopathological findings in the salivary gland of rats) indicating no human health risks in the studied populations at the moment. However, the controversy on carcinogenicity, potential endocrine effects and the absence of a group ADI for Gly and AMPA induce uncertainty to the risk assessment. Exposure determinant analysis showed few significant associations. More data on specific subgroups, such as those occupationally exposed or living close to agricultural fields or with certain consumption patterns (vegetarian, vegan, organic food, high cereal consumer), are needed to evaluate major exposure sources

    HBM4EU combines and harmonises human biomonitoring data across the EU, building on existing capacity - The HBM4EU survey

    Get PDF
    As part of the Human Biomonitoring for Europe (HBM4EU) initiative a human biomonitoring (HBM) survey is conducted in 21 countries. This survey builds on existing HBM capacity in Europe by aligning national or regional HBM studies. The survey targets 3 age groups (i) children aged 6-11 years, (ii) teenagers aged 12-19 years and (iii) young adults aged 20-39 years and includes a total of 9493 participants (3151 children, 2953 teenagers and 3389 young adults). Depending on the age group, internal exposure to phthalates and substitute Hexamoll® DINCH, brominated and organophosphorus flame retardants, per-/poly-fluorinated compounds, cadmium, bisphenols and/or polycyclic aromatic hydrocarbons are assessed. The main goal of the programme is to obtain quality controlled and comparable HBM data of exposure to chemicals, prioritized under HBM4EU, with European wide coverage to inform the development of environment and health policies. This paper describes the framework of the HBM4EU survey and the approach that has been applied to align European HBM initiatives across Europe.HBM4EU is co-financed under Horizon 2020 (grant agreement No 733032). The authors thank all principle investigators of the contributing studies for their participation and contribution to the joint HBM4EU survey and the national programme owners for their financial support. In addition we want to thank Dr. Liesbeth Bruckers and Dr. Michael Schümann.S

    Time Trends of Acrylamide Exposure in Europe: Combined Analysis of Published Reports and Current HBM4EU Studies

    Get PDF
    More than 20 years ago, acrylamide was added to the list of potential carcinogens found in many common dietary products and tobacco smoke. Consequently, human biomonitoring studies investigating exposure to acrylamide in the form of adducts in blood and metabolites in urine have been performed to obtain data on the actual burden in different populations of the world and in Europe. Recognizing the related health risk, the European Commission responded with measures to curb the acrylamide content in food products. In 2017, a trans-European human biomonitoring project (HBM4EU) was started with the aim to investigate exposure to several chemicals, including acrylamide. Here we set out to provide a combined analysis of previous and current European acrylamide biomonitoring study results by harmonizing and integrating different data sources, including HBM4EU aligned studies, with the aim to resolve overall and current time trends of acrylamide exposure in Europe. Data from 10 European countries were included in the analysis, comprising more than 5500 individual samples (3214 children and teenagers, 2293 adults). We utilized linear models as well as a non-linear fit and breakpoint analysis to investigate trends in temporal acrylamide exposure as well as descriptive statistics and statistical tests to validate findings. Our results indicate an overall increase in acrylamide exposure between the years 2001 and 2017. Studies with samples collected after 2018 focusing on adults do not indicate increasing exposure but show declining values. Regional differences appear to affect absolute values, but not the overall time-trend of exposure. As benchmark levels for acrylamide content in food have been adopted in Europe in 2018, our results may imply the effects of these measures, but only indicated for adults, as corresponding data are still missing for children

    PFAS levels and determinants of variability in exposure in European teenagers - Results from the HBM4EU aligned studies (2014-2021)

    Get PDF
    Background: Perfluoroalkyl substances (PFAS) are man-made fluorinated chemicals, widely used in various types of consumer products, resulting in their omnipresence in human populations. The aim of this study was to describe current PFAS levels in European teenagers and to investigate the determinants of serum/plasma concentrations in this specific age group. Methods: PFAS concentrations were determined in serum or plasma samples from 1957 teenagers (12-18 years) from 9 European countries as part of the HBM4EU aligned studies (2014-2021). Questionnaire data were post-harmonized by each study and quality checked centrally. Only PFAS with an overall quantification frequency of at least 60% (PFOS, PFOA, PFHxS and PFNA) were included in the analyses. Sociodemographic and lifestyle factors were analysed together with food consumption frequencies to identify determinants of PFAS exposure. The variables study, sex and the highest educational level of household were included as fixed factors in the multivariable linear regression models for all PFAS and each dietary variable was added to the fixed model one by one and for each PFAS separately. Results: The European exposure values for PFAS were reported as geometric means with 95% confidence intervals (CI): PFOS [2.13 μg/L (1.63-2.78)], PFOA ([0.97 μg/L (0.75-1.26)]), PFNA [0.30 μg/L (0.19-0.45)] and PFHxS [0.41 μg/L (0.33-0.52)]. The estimated geometric mean exposure levels were significantly higher in the North and West versus the South and East of Europe. Boys had significantly higher concentrations of the four PFAS compared to girls and significantly higher PFASs concentrations were found in teenagers from households with a higher education level. Consumption of seafood and fish at least 2 times per week was significantly associated with 21% (95% CI: 12-31%) increase in PFOS concentrations and 20% (95% CI: 10-31%) increase in PFNA concentrations as compared to less frequent consumption of seafood and fish. The same trend was observed for PFOA and PFHxS but not statistically significant. Consumption of eggs at least 2 times per week was associated with 11% (95% CI: 2-22%) and 14% (95% CI: 2-27%) increase in PFOS and PFNA concentrations, respectively, as compared to less frequent consumption of eggs. Significantly higher PFOS concentrations were observed for participants consuming offal (14% (95% CI: 3-26%)), the same trend was observed for the other PFAS but not statistically significant. Local food consumption at least 2 times per week was associated with 40% (95% CI: 19-64%) increase in PFOS levels as compared to those consuming local food less frequently. Conclusion: This work provides information about current levels of PFAS in European teenagers and potential dietary sources of exposure to PFAS in European teenagers. These results can be of use for targeted monitoring of PFAS in food.This work was supported by the European Union’s Horizon 2020 research and innovation programme under Grant agreement No 733032 HBM4EU (www.HBM4EU.eu), and received co-funding from the authors’ organizations: Riksmaten Adolescents: Riksmaten Adolescents was performed by the Swedish Food Agency with financial support from the Swedish Environmental Protection Agency and the Swedish Civil Contingencies Agency. NEB II: The Norwegian Institute of Public Health (NIPH) has contributed to funding of the Norwegian Environmental Biobank (NEB). The laboratory measurements have partly been funded by the Research Council of Norway through research projects (275903 and 268465) PCB cohort follow-up: PCB cohort follow-up received additional funding from the Ministry of Health of the Slovak Republic, program 07B0103. BEA: BEA study was funded by the Spanish Ministry of Agriculture, Fisheries and Food and the Instituto de Salud Carlos III (SEG 1321/15) SLO-CRP: The Slovenian SLO-CRP study was co-financed by the Jozef Stefan Institute program P1- 0143, and a national project “Exposure of children and adolescents to selected chemicals through their habitat environment” (grant agreement No. C2715-16-634802). CROME: CROME study was co-funded by the European Commission research funds of Horizon 2020. ESTEBAN: ESTEBAN study was funded by Santé Publique France and the French ministries of Health and the Environment. GerES V-sub: The funding of the German Ministry for the Environment, Nature Conservation, Nuclear Safety and Consumer Protection is gratefully acknowledged. FLEHS IV: The Flemish Center of Expertise on Environment and Health is funded by the Government of Flanders, Department of Environment & Spatial Development.S

    Fish consumption patterns and hair mercury levels in children and their mothers in 17 EU countries

    Get PDF
    The toxicity of methylmercury (MeHg) in humans is well established and the main source of exposure is via the consumption of large marine fish and mammals. Of particular concern are the potential neurodevelopmental effects of early life exposure to low-levels of MeHg. Therefore, it is important that pregnant women, children and women of childbearing age are, as far as possible, protected from MeHg exposure.Within the European project DEMOCOPHES, we have analyzed mercury (Hg) in hair in 1799 mother–child pairs from 17 European countries using a strictly harmonized protocol for mercury analysis. Parallel, harmonized questionnaires on dietary habits provided information on consumption patterns of fish and marine products. After hierarchical cluster analysis of consumption habits of the mother–child pairs, the DEMOCOPHES cohort can be classified into two branches of approximately similar size: one with high fish consumption (H) and another with low consumption (L). All countries have representatives in both branches, but Belgium, Denmark, Spain, Portugal and Sweden have twice as many or more mother–child pairs in H than in L. For Switzerland, Czech Republic, Hungary, Poland, Romania, Slovenia and Slovakia the situation is the opposite, with more representatives in L than H.There is a strong correlation (r=0.72) in hair mercury concentration between the mother and child in the same family, which indicates that they have a similar exposure situation. The clustering of mother–child pairs on basis of their fish consumption revealed some interesting patterns. One is that for the same sea fish consumption, other food items of marine origin, like seafood products or shellfish, contribute significantly to the mercury levels in hair. We conclude that additional studies are needed to assess and quantify exposure to mercury from seafood products, in particular. The cluster analysis also showed that 95% of mothers who consume once per week fish only, and no other marine products, have mercury levels 0.55 µg/g. Thus, the 95th percentile of the distribution in this group is only around half the US-EPA recommended threshold of 1 µg/g mercury in hair. Consumption of freshwater fish played a minor role in contributing to mercury exposure in the studied cohort.The DEMOCOPHES data shows that there are significant differences in MeHg exposure across the EU and that exposure is highly correlated with consumption of fish and marine products. Fish and marine products are key components of a healthy human diet and are important both traditionally and culturally in many parts of Europe. Therefore, the communication of the potential risks of mercury exposure needs to be carefully balanced to take into account traditional and cultural values as well as the potential health benefits from fish consumption. European harmonized human biomonitoring programs provide an additional dimension to national HMB programs and can assist national authorities to tailor mitigation and adaptation strategies (dietary advice, risk communication, etc.) to their country’s specific requirements

    Environmental risk factors of pregnancy outcomes: A summary of recent meta-analyses of epidemiological studies.

    Get PDF
    Background Various epidemiological studies have suggested associations between environmental exposures and pregnancy outcomes. Some studies have tempted to combine information from various epidemiological studies using meta-analysis. We aimed to describe the methodologies used in these recent meta-analyses of environmental exposures and pregnancy outcomes. Furthermore, we aimed to report their main findings. Methods We conducted a bibliographic search with relevant search terms. We obtained and evaluated 16 recent meta-analyses. Results The number of studies included in each reported meta-analysis varied greatly, with the largest number of studies available for environmental tobacco smoke. Only a small number of the studies reported having followed meta-analysis guidelines or having used a quality rating system. Generally they tested for heterogeneity and publication bias. Publication bias did not occur frequently. The meta-analyses found statistically significant negative associations between environmental tobacco smoke and stillbirth, birth weight and any congenital anomalies; PM2.5 and preterm birth; outdoor air pollution and some congenital anomalies; indoor air pollution from solid fuel use and stillbirth and birth weight; polychlorinated biphenyls (PCB) exposure and birth weight; disinfection by-products in water and stillbirth, small for gestational age and some congenital anomalies; occupational exposure to pesticides and solvents and some congenital anomalies; and agent orange and some congenital anomalies. Conclusions The number of meta-analyses of environmental exposures and pregnancy outcomes is small and they vary in methodology. They reported statistically significant associations between environmental exposures such as environmental tobacco smoke, air pollution and chemicals and pregnancy outcomes

    FAIR environmental and health registry (FAIREHR)- supporting the science to policy interface and life science research, development and innovation

    Get PDF
    The environmental impact on health is an inevitable by-product of human activity. Environmental health sciences is a multidisciplinary field addressing complex issues on how people are exposed to hazardous chemicals that can potentially affect adversely the health of present and future generations. Exposure sciences and environmental epidemiology are becoming increasingly data-driven and their efficiency and effectiveness can significantly improve by implementing the FAIR (findable, accessible, interoperable, reusable) principles for scientific data management and stewardship. This will enable data integration, interoperability and (re)use while also facilitating the use of new and powerful analytical tools such as artificial intelligence and machine learning in the benefit of public health policy, and research, development and innovation (RDI). Early research planning is critical to ensuring data is FAIR at the outset. This entails a well-informed and planned strategy concerning the identification of appropriate data and metadata to be gathered, along with established procedures for their collection, documentation, and management. Furthermore, suitable approaches must be implemented to evaluate and ensure the quality of the data. Therefore, the 'Europe Regional Chapter of the International Society of Exposure Science' (ISES Europe) human biomonitoring working group (ISES Europe HBM WG) proposes the development of a FAIR Environment and health registry (FAIREHR) (hereafter FAIREHR). FAIR Environment and health registry offers preregistration of studies on exposure sciences and environmental epidemiology using HBM (as a starting point) across all areas of environmental and occupational health globally. The registry is proposed to receive a dedicated web-based interface, to be electronically searchable and to be available to all relevant data providers, users and stakeholders. Planned Human biomonitoring studies would ideally be registered before formal recruitment of study participants. The resulting FAIREHR would contain public records of metadata such as study design, data management, an audit trail of major changes to planned methods, details of when the study will be completed, and links to resulting publications and data repositories when provided by the authors. The FAIREHR would function as an integrated platform designed to cater to the needs of scientists, companies, publishers, and policymakers by providing user-friendly features. The implementation of FAIREHR is expected to yield significant benefits in terms of enabling more effective utilization of human biomonitoring (HBM) data.Most co-authors were financialy supported with their respective inistitution. Some of the co-authors were financialy supportrd by the Safe and Efficient Chemistry by Design (SafeChem) project (grant no. DIA 2018/11) funded by the Swedish Foundation for Strategic Environmental Research, and by the PARC project (grant no. 101057014) funded under the European Union's Horizon Europe Research and Innovation program

    First steps toward harmonized human biomonitoring in Europe : demonstration project to perform human biomonitoring on a European scale

    Get PDF
    'Reproduced with permission from Environmental Health Perspectives'Background: For Europe as a whole, data on internal exposure to environmental chemicals do not yet exist. Characterization of the internal individual chemical environment is expected to enhance understanding of the environmental threats to health. Objectives: We developed and applied a harmonized protocol to collect comparable human biomonitoring data all over Europe. Methods: In 17 European countries, we measured mercury in hair and cotinine, phthalate metabolites, and cadmium in urine of 1,844 children (5–11 years of age) and their mothers. Specimens were collected over a 5-month period in 2011–2012. We obtained information on personal characteristics, environment, and lifestyle. We used the resulting database to compare concentrations of exposure biomarkers within Europe, to identify determinants of exposure, and to compare exposure biomarkers with healthbased guidelines. Results: Biomarker concentrations showed a wide variability in the European population. However, levels in children and mothers were highly correlated. Most biomarker concentrations were below the health-based guidance values. Conclusions: We have taken the first steps to assess personal chemical exposures in Europe as a whole. Key success factors were the harmonized protocol development, intensive training and capacity building for field work, chemical analysis and communication, as well as stringent quality control programs for chemical and data analysis. Our project demonstrates the feasibility of a Europe-wide human biomonitoring framework to support the decision-making process of environmental measures to protect public health.The research leading to these results received funding for the COPHES project (COnsortium to Perform Human biomonitoring on a European Scale) from the European Community’s Seventh Framework Programme [FP7/2007–2013] under grant agreement 244237. DEMOCOPHES (DEMOnstration of a study to COordinate and Perform Human biomonitoring on a European Scale) was co-funded (50%:50%) by the European Commission LIFE+ Programme (LIFE09/ENV/BE/000410) and the partners. For information on both projects as well as on the national co-funding institutions, see http://www.eu-hbm.info/. The sponsors had no role in the study design, data collection, data analysis, data interpretation or writing of the report
    corecore