5 research outputs found

    Evaluation and modification of some empirical and semi-empirical approaches for prediction of area-storage capacity curves in reservoirs of dams

    No full text
    The storage capacity of reservoirs is gradually reduced due to sediment accumulation that causes changes in the area-storage capacity (ASC) curves. Establishing these curves and predicting their future change is an important issue for planners, designers and operators of dams. Many empirical and semi-empirical approaches have been suggested for establishing and predicting the future changes for these curves. In this study four empirical and semi-empirical methods were evaluated and three of them were modified to be used for the prediction of changes in the ASC curves due to sedimentation, based on the existing sedimentation survey data for 11 reservoirs in the USA. For evaluation, these approaches were reviewed and used to determine sedimentation depth and establishing the ASC curves for the Mosul dam reservoir (MDR), which is the biggest hydraulic structure on the River Tigris in northern Iraq. MDR started operating in 1986 with a storage capacity of 11.11 km3 and a water surface area 380 km2 at normal operation stage (330 m a.s.l.). The results obtained from these methods were evaluated using observed bathymetric survey data that had been collected in 2011 after 25 years of the operation of the dam. The evaluation results showed three methods had presented more accurate results for estimating water depth or sedimentation depth at dam site with percentage error about 1.06–3.30%. Whilst for establishing ASC curves, one method presented good agreement result with survey data. Furthermore, ASC and sedimentation depths at dam site of MDR for periods 50, 75, 100 and 125 years were estimated using the modified approaches and the area reduction method. The results of the modified methods provided reasonable agreement when compared with the area reduction method proposed by the U.S. Bureau of Reclamation and the agreement became better with an increase in time period.Validerad; 2017; Nivå 2; 2017-04-03 (rokbeg)</p

    Monitoring and Evaluating the Sedimentation Process in Mosul Dam Reservoir Using Trap Efficiency Approaches

    No full text
    Reservoirs are usually exposed to sediment accumulation problems that will lead to reduction in their storage capacity. This problem directly affects the performance of the dams and causes shortage of their useful life. The simplest technique to estimate sediment deposition rate is using sediment rating curve with sediment trapping efficiency (TE) of the reservoir. Many empirical and semi-empirical approaches have been suggested for to determine this term depending on the annual inflow rate, reservoir characteristics and features of the catchments area. In this study six different empirical methods depending on the residence time principle (water retention time) were used. These approaches were reviewed and applied to determine TE of Mosul dam reservoir (MDR) for period 1986 to 2011. The monthly operating data for inflow, outflow and water elevations for MDR were used to determine monthly TE and long-term TE for whole period of MDR using the mentioned methods. Furthermore, the monthly inflow rate for River Tigris upstream MDR, its sediment rating curve and sediment feeding from valleys around MDR were used to estimate the amount sediment coming to the reservoir. The results provided by these methods for TE withsediment coming to MDR were used to compute the amount of sediment deposited in MDR on monthly bases during this period. The results obtained were evaluated using observed bathymetric survey data that had been collected in 2011 after 25 years of the operation of the dam. The results showed all the mentioned methods gave convergent results and they were very close to bathymetric survey results for estimating the volume of sediment deposited especially that proposed by Ward which gave 0.368% percentage error. Furthermore, the result computed using monthly TE gave good agreement if compared with that long-term TE where the percentage error was ranging between −3.229% to 1.674% for monthly adopted data and −4.862% to −2.477% for whole period data. It is believed that this work will help others to use this procedure on other reservoirs.Validerad; 2015; Nivå 1; 20150410 (nadhir

    Sedimentation processes and useful life of Mosul dam Reservoir, Iraq

    No full text
    The sedimentation process is the most important problems that affect directly the performance of reservoirs due to the reduction of the storage capacity and possible problems effecting the operation. Thus periodic assessment of the storage capacity and determining sediment deposition patterns is an important issue for operation and management of the reservoirs. In this study, bathymetric survey results and an analytical approach had been used to assess the characteristics of sedimentation and estimate the useful life of Mosul Reservoir. It is located on the Tigris River in the north of Iraq. The water surface area of its reservoir is 380 km2 with a designed storage capacity of 11.11 km3 at a maximum operating level (330 m a.s.l). The dam started operating in 1986. No detailed study was yet carried out to assess its reservoir. The present study indicated that the annual reduction rate in the dead and live storage capacities of the reservoir is 0.786% and 0.276% respectively. The observed results (bathymetric survey) and algebraic formula show approximately that the useful life of Mosul dam reservoir is about 125 years. Furthermore, the stage-storage capacity curves for the future periods (prediction curves) were established using bathymetric survey data.Validerad; 2013; 20130821 (nadhir

    Expected Future of Water resources within Tigris–Euphrates Rivers basin, Iraq

    No full text
    Iraq is one of the riparian countries within basins of Tigris-Euphrates Rivers in the Middle East region. The region is currently facing water shortage problems due to the increase of the demand and climate changes. In the present study, average monthly water flow measurements for 15 stream flow gaging stations within basins of these rivers in Iraq with population growth rate data in some of its part were used to evaluate the reality of the current situation and future challenges of water availability and demand in Iraq. The results showed that Iraq receives annually 70.92 km3 of water 45.4 and 25.52 km3 from River Tigris and Euphrates respectively. An amount of 18.04 km3 of the Tigris water comes from Turkey while 27.36 km3 is supplied by its tributaries inside Iraq. The whole amount of water in the Euphrates Rivers comes outside the Iraqi borders. Annual decrease of the water inflow is 0.1335 km3 year-1 for Tigris and 0.245 km3 year-1 for Euphrates. This implies the annual percentage reduction of inflow rates for the two rivers is 0.294% and 0.960% respectively. Iraq consumes annually 88.89% (63.05 km3) of incoming water from the two rivers, where about 60.43 and 39.57 % are from Rivers Tigris and Euphrates respectively. Water demand increases annually by 1.002 km3; of which 0.5271 km3 and 0.475 km3 within Tigris and Euphrates basins respectively. The average water demand in 2020 will increase to 42.844 km3 year-1 for Tigris basin and for Euphrates 29.225 km3 year-1 (total 72.069 km3 year-1), while water availability will decrease to 63.46 km3 year-1. This means that the overall water shortage will be restricted to 8.61 km3.Godkänd; 2014; 20140328 (nadhir
    corecore