4 research outputs found

    A rare coding mutation in the MAST2 gene causes venous thrombosis in a French family with unexplained thrombophilia: The Breizh MAST2 Arg89Gln variant.

    Get PDF
    Rare variants outside the classical coagulation cascade might cause inherited thrombosis. We aimed to identify the variant(s) causing venous thromboembolism (VTE) in a family with multiple relatives affected with unprovoked VTE and no thrombophilia defects. We identified by whole exome sequencing an extremely rare Arg to Gln variant (Arg89Gln) in the Microtubule Associated Serine/Threonine Kinase 2 (MAST2) gene that segregates with VTE in the family. Free-tissue factor pathway inhibitor (f-TFPI) plasma levels were significantly decreased in affected family members compared to healthy relatives. Conversely, plasminogen activator inhibitor-1 (PAI-1) levels were significantly higher in affected members than in healthy relatives. RNA sequencing analysis of RNA interference experimental data conducted in endothelial cells revealed that, of the 13,387 detected expressed genes, 2,354 have their level of expression modified by MAST2 knockdown, including SERPINE1 coding for PAI-1 and TFPI. In HEK293 cells overexpressing the MAST2 Gln89 variant, TFPI and SERPINE1 promoter activities were respectively lower and higher than in cells overexpressing the MAST2 wild type. This study identifies a novel thrombophilia-causing Arg89Gln variant in the MAST2 gene that is here proposed as a new molecular player in the etiology of VTE by interfering with hemostatic balance of endothelial cells

    Impact of genetic factors (VKORC1, CYP2C9, CYP4F2 and EPHX1) on the anticoagulation response to fluindione.

    No full text
    International audienceWHAT IS ALREADY KNOWN ABOUT THIS SUBJECT * CYP2C9 and VKORC1 genetic variants contribute to differences in patients' responses to anticoagulant coumarin derivatives. Patients carrying the VKORC1 1173TT genotype have a decreased time to the first INR within the therapeutic range and to the first INR >4, and also require lower warfarin maintenance doses. Patients carrying the *2 or *3 CYP2C9 allele have lower maintenance warfarin requirements than those carrying the wild-type allele. The role of CYP2C9 and VKORC1 genetic variants in fluindione response is unknown. WHAT THIS STUDY ADDS * Our results showed that VKORC1 genotype had a significant impact on early anticoagulation (INR value ≥2 after the first two intakes) (P 4 (P= 0.0002) and on the average daily dose of fluindione during the first period of stability (19.8 mg (±5.5) for VKORC1 CC, 14.7 mg (±6.2) for VKORC1 CT and 8.2 mg (±2.5) for VKORC1 TT, P 4 (P= 0.0002). The average daily dose of fluindione during the first period of stability was significantly associated with the VKORC1 genotype: 19.8 mg (±5.5) for VKORC1 CC, 14.7 mg (±6.2) for VKORC1 CT and 8.2 mg (±2.5) for VKORC1 TT (P < 0.0001). CYP2C9, CYP4F2 and EPHX1 genotypes did not significantly influence the response to fluindione. CONCLUSIONS VKORC1 genotype strongly affected anticoagulation induced by fluindione whereas CYP2C9, CYP4F2 and EPHX1 genotypes seemed less determining

    Comprehensive functional annotation of 18 missense mutations found in suspected hemochromatosis type 4 patients

    No full text
    International audienceHemochromatosis type 4 is a rare form of primary iron overload transmitted as an autosomal dominant trait caused by mutations in the gene encoding the iron transport protein ferroportin 1 (SLC40A1). SLC40A1 mutations fall into two functional categories (loss- versus gain-of-function) underlying two distinct clinical entities (hemochromatosis type4Aversus type 4B). However, the vast majority ofSLC40A1 mutations are rare missense variations, with only a few showing strong evidence of causality. The present study reports the results of an integrated approach collecting genetic and phenotypic data from 44 suspected hemochromatosis type 4 patients, with comprehensive structural and functional annotations. Causality was demonstrated for 10 missense variants, showing a clear dichotomy between the two hemochromatosis type 4 subtypes. Two subgroups of loss-of-function mutations were distinguished: one impairing cell-surface expression and one altering only iron egress. Additionally, a new gain-of-function mutation was identified, and the degradation of ferroportin on hepcidin binding was shown to probably depend on the integrity of a large extracellular loop outside of the hepcidin-binding domain. Eight further missense variations, on the other hand, were shown to have no discernible effects at either protein or RNA level; these were found in apparently isolated patients and were associated with a less severe phenotype. The present findings illustrate the importance ofcombining in silico and biochemical approaches to fully distinguish pathogenic SLC40A1 mutations from benign variants. This has profound implications for patient management
    corecore