167 research outputs found

    Weakly Coupled Motion of Individual Layers in Ferromagnetic Resonance

    Full text link
    We demonstrate a layer- and time-resolved measurement of ferromagnetic resonance (FMR) in a Ni81Fe19 / Cu / Co93Zr7 trilayer structure. Time-resolved x-ray magnetic circular dichroism has been developed in transmission, with resonant field excitation at a FMR frequency of 2.3 GHz. Small-angle (to 0.2 degree), time-domain magnetization precession could be observed directly, and resolved to individual layers through elemental contrast at Ni, Fe, and Co edges. The phase sensitivity allowed direct measurement of relative phase lags in the precession oscillations of individual elements and layers. A weak ferromagnetic coupling, difficult to ascertain in conventional FMR measurements, is revealed in the phase and amplitude response of individual layers across resonance.Comment: 22 pages, 6 figures submitted to Physical Review

    Large magnetic circular dichroism in resonant inelastic x-ray scattering at the Mn L-edge of Mn-Zn ferrite

    Full text link
    We report resonant inelastic x-ray scattering (RIXS) excited by circularly polarized x-rays on Mn-Zn ferrite at the Mn L2,3-resonances. We demonstrate that crystal field excitations, as expected for localized systems, dominate the RIXS spectra and thus their dichroic asymmetry cannot be interpreted in terms of spin-resolved partial density of states, which has been the standard approach for RIXS dichroism. We observe large dichroic RIXS at the L2-resonance which we attribute to the absence of metallic core hole screening in the insulating Mn-ferrite. On the other hand, reduced L3-RIXS dichroism is interpreted as an effect of longer scattering time that enables spin-lattice core hole relaxation via magnons and phonons occurring on a femtosecond time scale.Comment: 7 pages, 2 figures, http://link.aps.org/doi/10.1103/PhysRevB.74.17240

    Local structure and site occupancy of Cd and Hg substitutions in CeTIn5 (T=Co, Rh, Ir)

    Full text link
    The CeTIn5 superconductors (T=Co, Rh, or Ir) have generated great interest due to their relatively Tc's, NFL behavior, and their proximity to AF order and quantum critical points. In contrast to small changes with the T-species, electron doping in CeT(In{1-x}Mx)5 with M=Sn and hole doping with Cd or Hg have a dramatic effect on the electronic properties at very low concentrations. The present work reports EXAFS measurements that address the substituent atom distribution as a function of T, M, and x, near the superconducting phase. Together with previous measurements for M=Sn, the proportion of the M atom residing on the In(1) site, f{In(1)}, increases in the order M=Cd, Sn, and Hg, ranging from about 40% to 70%, showing a strong preference for these substituents to occupy the In(1) site (random=20%). In addition, f{In(1)} ranges from 70% to 100% for M=Hg in the order T=Co, Rh, and Ir. These fractions track the changes in the atomic radii of the various species, and help explain the sharp dependence of Tc on substituting into the In site. However, it is difficult to reconcile the small concentrations of M with the dramatic changes in the ground state in the hole-doped materials with only an impurity scattering model. These results therefore indicate that while such substitutions have interesting local atomic structures with important electronic and magnetic consequences, other local changes in the electronic and magnetic structure are equally important in determining the bulk properties of these materials.Comment: 10 pages, 7 figures, to appear in PR

    Theory of Excitonic States in CaB6

    Full text link
    We study the excitonic states in CaB6 in terms of the Ginzburg-Landau theory. By minimizing the free energy and by comparing with experimental results, we identify two possible ground states with exciton condensation. They both break time-reversal and inversion symmetries. This leads to various magnetic and optical properties. As for magnetic properties, it is expected to be an antiferromagnet, and its spin structure is predicted. It will exhibit the magnetoelectric effect, and observed novel ferromagnetism in doped samples and in thin-film and powder samples can arise from this effect. Interesting optical phenomena such as the nonreciprocal optical effect and the second harmonic generation are predicted. Their measurement for CaB6 will clarify whether exciton condensation occurs or not and which of the two states is realized.Comment: 17 pages, 3 figure

    Evidence for short range orbital order in paramagnetic insulating (Al,V)_2O_3

    Full text link
    The local structure of (Al_0.06V_0.94)_2O_3 in the paramagnetic insulating (PI) and antiferromagnetically ordered insulating (AFI) phase has been investigated using hard and soft x-ray absorption techniques. It is shown that: 1) on a local scale, the symmetry of the vanadium sites in both the PI and the AFI phase is the same; and 2) the vanadium 3d - oxygen 2p hybridization, as gauged by the oxygen 1s absorption edge, is the same for both phases, but distinctly different from the paramagnetic metallic phase of pure V_2O_3. These findings can be understood in the context of a recently proposed model which relates the long range monoclinic distortion of the antiferromagnetically ordered state to orbital ordering, if orbital short range order in the PI phase is assumed. The measured anisotropy of the x-ray absorption spectra is discussed in relation to spin-polarized density functional calculations.Comment: 8 pages, 5 figure
    • …
    corecore