120 research outputs found

    Black hole variability and the star formation-active galactic nucleus connection : do all star-forming galaxies host an active galactic nucleus?

    Get PDF
    We investigate the effect of active galactic nucleus (AGN) variability on the observed connection between star formation and black hole accretion in extragalactic surveys. Recent studies have reported relatively weak correlations between observed AGN luminosities and the properties of AGN hosts, which has been interpreted to imply that there is no direct connection between AGN activity and star formation. However, AGNs may be expected to vary significantly on a wide range of timescales (from hours to Myr) that are far shorter than the typical timescale for star formation (gsim100 Myr). This variability can have important consequences for observed correlations. We present a simple model in which all star-forming galaxies host an AGN when averaged over ~100 Myr timescales, with long-term average AGN accretion rates that are perfectly correlated with the star formation rate (SFR). We show that reasonable prescriptions for AGN variability reproduce the observed weak correlations between SFR and L AGN in typical AGN host galaxies, as well as the general trends in the observed AGN luminosity functions, merger fractions, and measurements of the average AGN luminosity as a function of SFR. These results imply that there may be a tight connection between AGN activity and SFR over galaxy evolution timescales, and that the apparent similarities in rest-frame colors, merger rates, and clustering of AGNs compared to "inactive" galaxies may be due primarily to AGN variability. The results provide motivation for future deep, wide extragalactic surveys that can measure the distribution of AGN accretion rates as a function of SFR

    (No) dynamical constraints on the mass of the black hole in two ULXs

    Get PDF
    We present the preliminary results of two Gemini campaigns to constrain the mass of the black hole in an ultraluminous X-ray source (ULX) via optical spectroscopy. Pilot studies of the optical counterparts of a number of ULXs revealed two candidates for further detailed study, based on the presence of a broad He II 4686 Ã… emission line. A sequence of 10 long-slit spectra were obtained for each object, and the velocity shift of the ULX counterpart measured. Although radial velocity variations are observed, they are not sinusoidal, and no mass function is obtained. However, the broad He II line is highly variable on timescales shorter than a day. If associated with the reprocessing of X-rays in the accretion disc, its breadth implies that the disc must be close to face-on

    A deficit of ultraluminous X-ray sources in luminous infrared galaxies

    Get PDF
    We present results from a Chandra study of ultraluminous X-ray sources (ULXs) in a sample of 17 nearby (DL < 60 Mpc) luminous infrared galaxies (LIRGs), selected to have star formation rates (SFRs) in excess of 7 M⊙ yr−1 and low foreground Galactic column densities (NH ≲ 5 × 1020 cm−2). A total of 53 ULXs were detected and we confirm that this is a complete catalogue of ULXs for the LIRG sample. We examine the evolution of ULX spectra with luminosity in these galaxies by stacking the spectra of individual objects in three luminosity bins, finding a distinct change in spectral index at luminosity ∼2 × 1039 erg s−1. This may be a change in spectrum as 10 M⊙ black holes transit from an ∼ Eddington to a super-Eddington accretion regime, and is supported by a plausible detection of partially ionized absorption imprinted on the spectrum of the luminous ULX (LX ≈ 5 × 1039 erg s−1) CXOU J024238.9-000055 in NGC 1068, consistent with the highly ionized massive wind that we would expect to see driven by a super-Eddington accretion flow. This sample shows a large deficit in the number of ULXs detected per unit SFR (0.2 versus 2 ULXs, per M⊙ yr−1) compared to the detection rate in nearby (DL < 14.5 Mpc) normal star-forming galaxies. This deficit also manifests itself as a lower differential X-ray luminosity function normalization for the LIRG sample than for samples of other star-forming galaxies. We show that it is unlikely that this deficit is a purely observational effect. Part of this deficit might be attributable to the high metallicity of the LIRGs impeding the production efficiency of ULXs and/or a lag between the star formation starting and the production of ULXs; however, we argue that the evidence – including very low NULX/LFIR, and an even lower ULX incidence in the central regions of the LIRGs – shows that the main culprit for this deficit is likely to be the high column of gas and dust in these galaxies, that fuels the high SFR but also acts to obscure many ULXs from our view

    Variable Hard-X-Ray Emission from the Candidate Accreting Black Hole in Dwarf Galaxy Henize 2-10

    Get PDF
    We present an analysis of the X-ray spectrum and long-term variability of the nearby dwarf starburst galaxy Henize 2–10. Recent observations suggest that this galaxy hosts an actively accreting black hole (BH) with mass ~106 M⊙{{M}_{\odot }}. The presence of an active galactic nucleus (AGN) in a low-mass starburst galaxy marks a new environment for AGNs, with implications for the processes by which "seed" BHs may form in the early universe. In this paper, we analyze four epochs of X-ray observations of Henize 2–10, to characterize the long-term behavior of its hard nuclear emission. We analyze observations with Chandra from 2001 and XMM-Newton from 2004 and 2011, as well as an earlier, less sensitive observation with ASCA from 1997. Based on a detailed analysis of the source and background, we find that the hard (2–10 keV) flux of the putative AGN has decreased by approximately an order of magnitude between the 2001 Chandra observation and exposures with XMM-Newton in 2004 and 2011. The observed variability confirms that the emission is due to a single source. It is unlikely that the variable flux is due to a supernova or ultraluminous X-ray source, based on the observed long-term behavior of the X-ray and radio emission, while the observed X-ray variability is consistent with the behavior of well-studied AGNs

    Galaxy-scale Bars in Late-type Sloan Digital Sky Survey Galaxies Do Not Influence the Average Accretion Rates of Supermassive Black Holes

    Get PDF
    Galaxy-scale bars are expected to provide an effective means for driving material toward the central region in spiral galaxies, and possibly feeding supermassive black holes (BHs). Here we present a statistically complete study of the effect of bars on average BH accretion. From a well-selected sample of 50,794 spiral galaxies (with {M}_{* }\sim 0.2\mbox{--}30\times {10}^{10}\,{M}_{\odot }) extracted from the Sloan Digital Sky Survey Galaxy Zoo 2 project, we separate those sources considered to contain galaxy-scale bars from those that do not. Using archival data taken by the Chandra X-ray Observatory, we identify X-ray luminous (LX≳1041 erg s−1{L}_{{\rm{X}}}\gtrsim {10}^{41}\,\mathrm{erg}\,{{\rm{s}}}^{-1}) active galactic nuclei and perform an X-ray stacking analysis on the remaining X-ray undetected sources. Through X-ray stacking, we derive a time-averaged look at accretion for galaxies at fixed stellar mass and star-formation rate, finding that the average nuclear accretion rates of galaxies with bar structures are fully consistent with those lacking bars (M˙acc≈3×10−5{\dot{M}}_{\mathrm{acc}}\approx 3\times {10}^{-5} M⊙{M}_{\odot } yr−1). Hence, we robustly conclude that large-scale bars have little or no effect on the average growth of BHs in nearby (z<0.15z\lt 0.15) galaxies over gigayear timescales

    Theory of asymmetric non-additive binary hard-sphere mixtures

    Full text link
    We show that the formal procedure of integrating out the degrees of freedom of the small spheres in a binary hard-sphere mixture works equally well for non-additive as it does for additive mixtures. For highly asymmetric mixtures (small size ratios) the resulting effective Hamiltonian of the one-component fluid of big spheres, which consists of an infinite number of many-body interactions, should be accurately approximated by truncating after the term describing the effective pair interaction. Using a density functional treatment developed originally for additive hard-sphere mixtures we determine the zero, one, and two-body contribution to the effective Hamiltonian. We demonstrate that even small degrees of positive or negative non-additivity have significant effect on the shape of the depletion potential. The second virial coefficient B2B_2, corresponding to the effective pair interaction between two big spheres, is found to be a sensitive measure of the effects of non-additivity. The variation of B2B_2 with the density of the small spheres shows significantly different behavior for additive, slightly positive and slightly negative non-additive mixtures. We discuss the possible repercussions of these results for the phase behavior of binary hard-sphere mixtures and suggest that measurements of B2B_2 might provide a means of determining the degree of non-additivity in real colloidal mixtures

    X-Ray Spectral Constraints for z ≈ 2 Massive Galaxies: The Identification of Reflection-dominated Active Galactic Nuclei

    Get PDF
    We use the 4 Ms Chandra Deep Field-South (CDF-S) survey to place direct constraints on the ubiquity of z 2 heavily obscured active galactic nuclei (AGNs) in K 10 keV observatories. On the basis of these analyses, we estimate the space density for typical (intrinsic X-ray luminosities of L 2-10 keV 1043 erg s–1) heavily obscured and Compton-thick AGNs at z 2. Our space-density constraints are conservative lower limits but they are already consistent with the range of predictions from X-ray background models

    Isotopic and spin selectivity of H_2 adsorbed in bundles of carbon nanotubes

    Full text link
    Due to its large surface area and strongly attractive potential, a bundle of carbon nanotubes is an ideal substrate material for gas storage. In addition, adsorption in nanotubes can be exploited in order to separate the components of a mixture. In this paper, we investigate the preferential adsorption of D_2 versus H_2(isotope selectivity) and of ortho versus para(spin selectivity) molecules confined in the one-dimensional grooves and interstitial channels of carbon nanotube bundles. We perform selectivity calculations in the low coverage regime, neglecting interactions between adsorbate molecules. We find substantial spin selectivity for a range of temperatures up to 100 K, and even greater isotope selectivity for an extended range of temperatures,up to 300 K. This isotope selectivity is consistent with recent experimental data, which exhibit a large difference between the isosteric heats of D_2 and H_2 adsorbed in these bundles.Comment: Paper submitted to Phys.Rev. B; 17 pages, 2 tables, 6 figure
    • …
    corecore