11,183 research outputs found

    Dispersion corrections in graphenic systems: a simple and effective model of binding

    Full text link
    We combine high-level theoretical and \emph{ab initio} understanding of graphite to develop a simple, parametrised force-field model of interlayer binding in graphite, including the difficult non-pairwise-additive coupled-fluctuation dispersion interactions. The model is given as a simple additive correction to standard density functional theory (DFT) calculations, of form ΔU(D)=f(D)[UvdW(D)−UDFT(D)]\Delta U(D)=f(D)[U^{vdW}(D)-U^{DFT}(D)] where DD is the interlayer distance. The functions are parametrised by matching contact properties, and long-range dispersion to known values, and the model is found to accurately match high-level \emph{ab initio} results for graphite across a wide range of DD values. We employ the correction on the difficult bigraphene binding and graphite exfoliation problems, as well as lithium intercalated graphite LiC6_6. We predict the binding energy of bigraphene to be 0.27 J/m^2, and the exfoliation energy of graphite to be 0.31 J/m^2, respectively slightly less and slightly more than the bulk layer binding energy 0.295 J/m^2/layer. Material properties of LiC6_6 are found to be essentially unchanged compared to the local density approximation. This is appropriate in view of the relative unimportance of dispersion interactions for LiC6_6 layer binding

    Binding and interlayer force in the near-contact region of two graphite slabs: experiment and theory

    Full text link
    Via a novel experiment, Liu \emph{et al.} [Phys. Rev. B, {\bf 85}, 205418 (2012)] estimated the graphite binding energy, specifically the cleavage energy, an important physical property of bulk graphite. We re-examine the data analysis and note that within the standard Lennard-Jones model employed, there are difficulties in achieving internal consistency in the reproduction of the graphite elastic properties. By employing similar models which guarantee consistency with the elastic constant, we find a wide range of model dependent binding energy values from the same experimental data. We attribute some of the difficulty in the determination of the binding energy to: i) limited theoretical understanding of the van der Waals dispersion of graphite cleavage, ii) the mis-match between the strong bending stiffness of the graphite-SiO2_2 cantilever and the weak asymptotic inter-layer forces that are integrated over to produce the binding energy. We find, however, that the data does support determination of a maximum inter-layer force that is relatively model independent. We conclude that the peak force per unit area is 1.1±0.151.1 \pm 0.15GPa for cleavage, and occurs at an inter-layer spacing of 0.377±0.0130.377\pm 0.013nm

    The min-max supergraph

    Get PDF

    New constraints on primordial black holes abundance from femtolensing of gamma-ray bursts

    Full text link
    The abundance of primordial black holes is currently significantly constrained in a wide range of masses. The weakest limits are established for the small mass objects, where the small intensity of the associated physical phenomenon provides a challenge for current experiments. We used gamma- ray bursts with known redshifts detected by the Fermi Gamma-ray Burst Monitor (GBM) to search for the femtolensing effects caused by compact objects. The lack of femtolensing detection in the GBM data provides new evidence that primordial black holes in the mass range 5 \times 10^{17} - 10^{20} g do not constitute a major fraction of dark matter.Comment: 7 pages, 6 figures, submitted to Physical Review

    Small world effects in evolution

    Get PDF
    For asexual organisms point mutations correspond to local displacements in the genotypic space, while other genotypic rearrangements represent long-range jumps. We investigate the spreading properties of an initially homogeneous population in a flat fitness landscape, and the equilibrium properties on a smooth fitness landscape. We show that a small-world effect is present: even a small fraction of quenched long-range jumps makes the results indistinguishable from those obtained by assuming all mutations equiprobable. Moreover, we find that the equilibrium distribution is a Boltzmann one, in which the fitness plays the role of an energy, and mutations that of a temperature.Comment: 13 pages and 5 figures. New revised versio

    Topology and Evolution of Technology Innovation Networks

    Get PDF
    The web of relations linking technological innovation can be fairly described in terms of patent citations. The resulting patent citation network provides a picture of the large-scale organization of innovations and its time evolution. Here we study the patterns of change of patents registered by the US Patent and Trademark Office (USPTO). We show that the scaling behavior exhibited by this network is consistent with a preferential attachment mechanism together with a Weibull-shaped aging term. Such attachment kernel is shared by scientific citation networks, thus indicating an universal type of mechanism linking ideas and designs and their evolution. The implications for evolutionary theory of innovation are discussed.Comment: 6 pages, 5 figures, submitted to Physical Review

    On the “Duel” Nature of History: Revisiting Contingency versus Determinism

    Get PDF
    Are we “historical accidents” of an undirected evolutionary history? In his recent book, Islands in the Cosmos, Dale Russell addresses this question, and Brian Swartz reviews his synthesis of this “cosmic” evolutionary debate
    • 

    corecore