67 research outputs found

    Positive and negative viral associations in patients with acute respiratory tract infections in primary care: the ECOVIR study

    Get PDF
    IntroductionAcute respiratory infections (ARIs) are the most common viral infections encountered in primary care settings. The identification of causal viruses is still not available in routine practice. Although new strategies of prevention are being identified, knowledge of the relationships between respiratory viruses remains limited.Materials and methodsECOVIR was a multicentric prospective study in primary care, which took place during two pre-pandemic seasons (2018–2019 and 2019–2020). Patients presenting to their General practitioner (GP) with ARIs were included, without selecting for age or clinical conditions. Viruses were detected on nasal swab samples using a multiplex Polymerase Chain Reaction test focused on 17 viruses [Respiratory Syncytial Virus-A (RSV-A), RSV-B, Rhinovirus/Enterovirus (HRV), human Metapneumovirus (hMPV), Adenovirus (ADV), Coronaviruses (CoV) HKU1, NL63, 229E, OC43, Influenza virus (H1 and H3 subtypes), Influenza virus B, Para-Influenza viruses (PIVs) 1–4, and Bocavirus (BoV)].ResultsAmong the 668 analyzed samples, 66% were positive for at least one virus, of which 7.9% were viral codetections. The viral detection was negatively associated with the age of patients. BoV, ADV, and HRV occurred more significantly in younger patients than the other viruses (p < 0.05). Codetections were significantly associated with RSV, HRV, BoV, hMPV, and ADV and not associated with influenza viruses, CoV, and PIVs. HRV and influenza viruses were negatively associated with all the viruses. Conversely, a positive association was found between ADV and BoV and between PIVs and BoV.ConclusionOur study provides additional information on the relationships between respiratory viruses, which remains limited in primary care

    White-Nose Syndrome Fungus (Geomyces destructans) in Bat, France

    Get PDF
    White-nose syndrome is caused by the fungus Geomyces destructans and is responsible for the deaths of >1,000,000 bats since 2006. This disease and fungus had been restricted to the northeastern United States. We detected this fungus in a bat in France and assessed the implications of this finding

    Change in Japanese Encephalitis Virus Distribution,Thailand

    Get PDF
    Japanese encephalitis virus (JEV) genotypes in Thailand were studied in pigs and mosquitoes collected near houses of confirmed human JEV cases in 2003–2005. Twelve JEV strains isolated belonged to genotype I, which shows a switch from genotype III incidence that started during the 1980s

    Anthrax bio-surveillance of livestock in Arua District, Uganda, 2017-2018

    Get PDF
    Altres ajuts: acords transformatius de la UABThe authors would like to express their gratitude to the local Sub-County chiefs, district veterinary officers, community elders, and kraal leaders for being supportive during data collection. Author JG has received mobility support from Universitat Autònoma de Barcelona (action Erasmus+ KA107 Mobility Fellowship) and was supported by the Generalitat de Catalunya, Agency for Management of University and Research Grants co-financed with the European Social Found (grants for the recruitment of new research staff 2018 FI_B 00236). Authors RAO, ME, MA, MFN, MI, EI, MM, LP, BS, and SAA were funded by Livestock Disease Control project II.Anthrax, caused by Bacillus anthracis, is a widespread zoonotic disease with many human cases, especially in developing countries. Even with its global distribution, anthrax is a neglected disease with scarce information about its actual impact on the community level. Due to the ecological dynamics of anthrax transmission at the wildlife-livestock interface, the Sub-Saharan Africa region becomes a high-risk zone for maintaining and acquiring the disease. In this regard, some subregions of Uganda are endemic to anthrax with regular seasonal trends. However, there is scarce data about anthrax outbreaks in Uganda. Here, we confirmed the presence of B. anthracis in several livestock samples after a suspected anthrax outbreak among livestock and humans in Arua District. Additionally, we explored the potential risk factors of anthrax through a survey within the community kraals. We provide evidence that the most affected livestock species during the Arua outbreak were cattle (86%) compared to the rest of the livestock species present in the area. Moreover, the farmers' education level and the presence of people's anthrax cases were the most critical factors determining the disease's knowledge and awareness. Consequently, the lack of understanding of the ecology of anthrax may contribute to the spread of the infection between livestock and humans, and it is critical to reducing the presence and persistence of the B. anthracis spores in the environment. Finally, we discuss the increasingly recognized necessity to strengthen global capacity using a One Health approach to prevent, detect, control, and respond to public threats in Uganda

    Human Skin Microbiota: High Diversity of DNA Viruses Identified on the Human Skin by High Throughput Sequencing

    Get PDF
    The human skin is a complex ecosystem that hosts a heterogeneous flora. Until recently, the diversity of the cutaneous microbiota was mainly investigated for bacteria through culture based assays subsequently confirmed by molecular techniques. There are now many evidences that viruses represent a significant part of the cutaneous flora as demonstrated by the asymptomatic carriage of beta and gamma-human papillomaviruses on the healthy skin. Furthermore, it has been recently suggested that some representatives of the Polyomavirus genus might share a similar feature. In the present study, the cutaneous virome of the surface of the normal-appearing skin from five healthy individuals and one patient with Merkel cell carcinoma was investigated through a high throughput metagenomic sequencing approach in an attempt to provide a thorough description of the cutaneous flora, with a particular focus on its viral component. The results emphasize the high diversity of the viral cutaneous flora with multiple polyomaviruses, papillomaviruses and circoviruses being detected on normal-appearing skin. Moreover, this approach resulted in the identification of new Papillomavirus and Circovirus genomes and confirmed a very low level of genetic diversity within human polyomavirus species. Although viruses are generally considered as pathogen agents, our findings support the existence of a complex viral flora present at the surface of healthy-appearing human skin in various individuals. The dynamics and anatomical variations of this skin virome and its variations according to pathological conditions remain to be further studied. The potential involvement of these viruses, alone or in combination, in skin proliferative disorders and oncogenesis is another crucial issue to be elucidated

    The evolution of sensory divergence in the context of limited gene flow in the bumblebee bat

    No full text
    The sensory drive theory of speciation predicts that populations of the same species inhabiting different environments can differ in sensory traits, and that this sensory difference can ultimately drive speciation. However, even in the best-known examples of sensory ecology driven speciation, it is uncertain whether the variation in sensory traits is the cause or the consequence of a reduction in levels of gene flow. Here we show strong genetic differentiation, no gene flow and large echolocation differences between the allopatric Myanmar and Thai populations of the world\u27s smallest mammal, Craseonycteris thonglongyai, and suggest that geographic isolation most likely preceded sensory divergence. Within the geographically continuous Thai population, we show that geographic distance has a primary role in limiting gene flow rather than echolocation divergence. In line with sensory-driven speciation models, we suggest that in C. thonglongyai, limited gene flow creates the suitable conditions that favour the evolution of sensory divergence via local adaptation

    Genetic Drift, Purifying Selection and Vector Genotype Shape Dengue Virus Intra-host Genetic Diversity in Mosquitoes

    Get PDF
    Due to their error-prone replication, RNA viruses typically exist as a diverse population of closely related genomes, which is considered critical for their fitness and adaptive potential. Intra-host demographic fluctuations that stochastically reduce the effective size of viral populations are a challenge to maintaining genetic diversity during systemic host infection. Arthropod-borne viruses (arboviruses) traverse several anatomical barriers during infection of their arthropod vectors that are believed to impose population bottlenecks. These anatomical barriers have been associated with both maintenance of arboviral genetic diversity and alteration of the variant repertoire. Whether these patterns result from stochastic sampling (genetic drift) rather than natural selection, and/or from the influence of vector genetic heterogeneity has not been elucidated. Here, we used deep sequencing of full-length viral genomes to monitor the intra-host evolution of a wild-type dengue virus isolate during infection of several mosquito genetic backgrounds. We estimated a bottleneck size ranging from 5 to 42 founding viral genomes at initial midgut infection, irrespective of mosquito genotype, resulting in stochastic reshuffling of the variant repertoire. The observed level of genetic diversity increased following initial midgut infection but significantly differed between mosquito genetic backgrounds despite a similar initial bottleneck size. Natural selection was predominantly negative (purifying) during viral population expansion. Taken together, our results indicate that dengue virus intra-host genetic diversity in the mosquito vector is shaped by genetic drift and purifying selection, and point to a novel role for vector genetic factors in the genetic breadth of virus populations during infection. Identifying the evolutionary forces acting on arboviral populations within their arthropod vector provides novel insights into arbovirus evolution.status: publishe

    The evolution of sensory divergence in the context of limited gene flow in the bumblebee bat

    No full text
    The sensory drive theory of speciation predicts that populations of the same species inhabiting different environments can differ in sensory traits, and that this sensory difference can ultimately drive speciation. However, even in the best-known examples of sensory ecology driven speciation, it is uncertain whether the variation in sensory traits is the cause or the consequence of a reduction in levels of gene flow. Here we show strong genetic differentiation, no gene flow and large echolocation differences between the allopatric Myanmar and Thai populations of the world\u27s smallest mammal, Craseonycteris thonglongyai, and suggest that geographic isolation most likely preceded sensory divergence. Within the geographically continuous Thai population, we show that geographic distance has a primary role in limiting gene flow rather than echolocation divergence. In line with sensory-driven speciation models, we suggest that in C. thonglongyai, limited gene flow creates the suitable conditions that favour the evolution of sensory divergence via local adaptation

    Genomic Analysis of 15 Human Coronaviruses OC43 (HCoV-OC43s) Circulating in France from 2001 to 2013 Reveals a High Intra-Specific Diversity with New Recombinant Genotypes

    Get PDF
    Human coronavirus OC43 (HCoV-OC43) is one of five currently circulating human coronaviruses responsible for respiratory infections. Like all coronaviruses, it is characterized by its genome’s high plasticity. The objectives of the current study were to detect genetically distinct genotypes and eventually recombinant genotypes in samples collected in Lower Normandy between 2001 and 2013. To this end, we sequenced complete nsp12, S, and N genes of 15 molecular isolates of HCoV-OC43 from clinical samples and compared them to available data from the USA, Belgium, and Hong-Kong. A new cluster E was invariably detected from nsp12, S, and N data while the analysis of nsp12 and N genes revealed the existence of new F and G clusters respectively. The association of these different clusters of genes in our specimens led to the description of thirteen genetically distinct genotypes, among which eight recombinant viruses were discovered. Identification of these recombinant viruses, together with temporal analysis and tMRCA estimation, provides important information for understanding the dynamics of the evolution of these epidemic coronaviruses

    First Complete Genome Sequence of a French Bovine coronavirus Strain

    No full text
    Accession number(s) : The complete genome sequence sequence of the BCoV/FRA-EPI/CAEN/2014/13 isolate has been deposited in GenBank under the accession number KX982264.International audienceWe sequenced the first Bovine coronavirus (BCoV) complete genome sequence from France. This BCoV was directly sequenced from a fecal sample collected from a calf in Normandy in 2014
    corecore