71 research outputs found

    Interaction between caesium iodide particles and gaseous boric acid in a flowing system through a thermal gradient tube (1030 K–450 K) and analysis with ASTEC/SOPHAEROS

    Get PDF
    International audienceThe present work aimed at studying the interaction between caesium iodide particles and gaseous boric acidthrough a Thermal Gradient Tube (TGT) from 1023 K to 453 K under Ar/H2O. Particles size range of transportedparticles was measured by ELPI and the fraction of gaseous compounds by ICP-MS and UV–visible spectroscopy.Reaction between the two compounds was deduced by measuring a significant fraction of gaseous iodine at theoutlet of the facility, representing more than 80% of the total iodine sampled at the outlet. The reaction rate wasshown to be lower when the flow rate inside the facility was increased. Analysis with SOPHAEROS module ofASTEC code was performed. The ASTEC fission products models allowed performing the evaluation of theexperimentally observed results for the analysis of the transport of pure compounds. However, the heterogeneousinteraction between the caesium iodide particles and the gaseous boric acid was not reproduced, as the modelsare not taken into account in the version v2.1_1_6 of the ASTEC/SOPHAEROS module. The next step would be toidentify the mechanism of the reaction by comparing the results with other studies and to determine the reactionrates. Then, a first development in SOPHAEROS would be to implement such phenomena

    Systematic review for non-surgical interventions for the management of late radiation proctitis

    Get PDF
    Chronic radiation proctitis produces a range of clinical symptoms for which there is currently no recommended standard management. The aim of this review was to identify the various non-surgical treatment options for the management of late chronic radiation proctitis and evaluate the evidence for their efficacy. Synonyms for radiation therapy and for the spectrum of lower gastrointestinal radiation toxicity were combined in an extensive search strategy and applied to a range of databases. The included studies were those that involved interventions for the non-surgical management of late radiation proctitis. Sixty-three studies were identified that met the inclusion criteria, including six randomised controlled trials that described the effects of anti-inflammatory agents in combination, rectal steroids alone, rectal sucralfate, short chain fatty acid enemas and different types of thermal therapy. However, these studies could not be compared. If the management of late radiation proctitis is to become evidence based, then, in view of its episodic and variable nature, placebo controlled studies need to be conducted to clarify which therapeutic options should be recommended. From the current data, although certain interventions look promising and may be effective, one small or modest sized study, even if well-conducted, is insufficient to implement changes in practice. In order to increase recruitment to trials, a national register of cases with established late radiation toxicity would facilitate multi-centre trials with specific entry criteria, formal baseline and therapeutic assessments providing standardised outcome data

    Chemistry of iodine and aerosol composition in the primary circuit of a nuclear plant in severe accident conditions

    No full text
    En cas d'accident grave sur un rĂ©acteur Ă  eau sous pression, l'Ă©valuation de la quantitĂ© d'iode susceptible d'ĂȘtre rejetĂ©e dans l'environnement revĂȘt une grande importance du fait de la radiotoxicitĂ© et du caractĂšre volatil de cet Ă©lĂ©ment. Le rejet d'iode du cƓur du rĂ©acteur endommagĂ© et son transport dans les diffĂ©rentes parties du rĂ©acteur jusqu'Ă  l'enceinte de confinement, ont Ă©tĂ© largement Ă©tudiĂ©s, en particulier dans les expĂ©riences PhĂ©bus-FB. A ce jour, les connaissances acquises et les modĂšles utilisĂ©s ne permettent pas de rendre compte complĂštement du comportement de l'iode observĂ© lors d'essais Ă  grande Ă©chelle. Une hypothĂšse est que l'iode gazeux proviendrait du circuit primaire Ă  cause de processus qui limiteraient la formation d'iodure de cĂ©sium. La formation d'iodure de cĂ©sium pourrait ĂȘtre limitĂ©e Ă  cause de limitations cinĂ©tiques ou Ă  la prĂ©sence d'Ă©lĂ©ments qui piĂ©geraient le cĂ©sium (molybdĂšne, bore). Des expĂ©riences de laboratoire dans un montage spĂ©cialement conçu reproduisent la chimie de mĂ©langes CsI/MoO3 et CsI/H3BO3 sous vapeur d'eau entre 1600°C (tempĂ©rature et 150°C. Les aĂ©rosols et les gaz prĂ©sents Ă  150°C sont piĂ©gĂ©s sĂ©parĂ©ment. Les analyses des phases condensĂ©es et aĂ©rosols par MEBE-EDX, microspectromĂ©trie Raman, ICP-MS et XPS ont permis d'identifier des particules d'aĂ©rosols submicroniques collectĂ©s Ă  150°C. Les analyses des gaz piĂ©gĂ©s en solution par ICP-MS et spectroscopie UV-visible traduisent l'existence d'iode gazeux pour les deux systĂšmes Ă©tudiĂ©s {Cs, I, Mo, O, H} et {Cs, I, B, O, H}. La modĂ©lisation de la chimie et du transport des espĂšces gazeuses et particulaires pour les deux systĂšmes dans la ligne expĂ©rimentale a Ă©tĂ© rĂ©alisĂ©e Ă  l'aide du code de calcul SOPHAEROS dĂ©veloppĂ© Ă  l'IRSN. Les rĂ©sultats expĂ©rimentaux ont ainsi pu ĂȘtre comparĂ©s aux rĂ©sultats des simulations.In case of a severe accident on a nuclear reactor, radioactive iodine may be released into the environment, impacting significantly the radiological consequences. Determination of the amount released, and of the physical state of iodine (gaseous form or solid aerosol form), is thus a major issue. The release of iodine from the damaged reactor core and its transport in the different parts of the reactor up to the reactor containment, have been extensively studied, particularly in the PhĂ©bus-FP large scale experiments. PhĂ©bus-FP results notably showed that a significant fraction of iodine under gaseous form can reach the containment. The models used in severe accident codes did not (and still does not) fully account for this iodine speciation. A likely explanation is that iodine keeps a gaseous form up to the containment due to some processes that limit the formation of caesium iodide in the reactor coolant system (RCS) (caesium iodide was assumed to be the dominant form of iodine in the RCS). Caesium iodide formation would be limited due to chemical kinetic limitations and due to the presence of other elements (molybdenum or boron) responsible for “trapping” the caesium. An experimental research program has been developed with the aim to study the chemical behaviour of iodine during its transport in the RCS, with presence of steam, caesium and molybdenum or boron. Experiments are compared to calculations performed with the IRSN severe accident code ASTEC where a chemical kinetic model has been implemente

    Chimie de l'iode et composition des aérosols dans le circuit primaire d'un réacteur nucléaire en situation d'accident grave

    No full text
    In case of a severe accident on a nuclear reactor, radioactive iodine may be released into the environment, impacting significantly the radiological consequences. Determination of the amount released, and of the physical state of iodine (gaseous form or solid aerosol form), is thus a major issue. The release of iodine from the damaged reactor core and its transport in the different parts of the reactor up to the reactor containment, have been extensively studied, particularly in the PhĂ©bus-FP large scale experiments. PhĂ©bus-FP results notably showed that a significant fraction of iodine under gaseous form can reach the containment. The models used in severe accident codes did not (and still does not) fully account for this iodine speciation. A likely explanation is that iodine keeps a gaseous form up to the containment due to some processes that limit the formation of caesium iodide in the reactor coolant system (RCS) (caesium iodide was assumed to be the dominant form of iodine in the RCS). Caesium iodide formation would be limited due to chemical kinetic limitations and due to the presence of other elements (molybdenum or boron) responsible for “trapping” the caesium. An experimental research program has been developed with the aim to study the chemical behaviour of iodine during its transport in the RCS, with presence of steam, caesium and molybdenum or boron. Experiments are compared to calculations performed with the IRSN severe accident code ASTEC where a chemical kinetic model has been implementedEn cas d'accident grave sur un rĂ©acteur Ă  eau sous pression, l'Ă©valuation de la quantitĂ© d'iode susceptible d'ĂȘtre rejetĂ©e dans l'environnement revĂȘt une grande importance du fait de la radiotoxicitĂ© et du caractĂšre volatil de cet Ă©lĂ©ment. Le rejet d'iode du cƓur du rĂ©acteur endommagĂ© et son transport dans les diffĂ©rentes parties du rĂ©acteur jusqu'Ă  l'enceinte de confinement, ont Ă©tĂ© largement Ă©tudiĂ©s, en particulier dans les expĂ©riences PhĂ©bus-FB. A ce jour, les connaissances acquises et les modĂšles utilisĂ©s ne permettent pas de rendre compte complĂštement du comportement de l'iode observĂ© lors d'essais Ă  grande Ă©chelle. Une hypothĂšse est que l'iode gazeux proviendrait du circuit primaire Ă  cause de processus qui limiteraient la formation d'iodure de cĂ©sium. La formation d'iodure de cĂ©sium pourrait ĂȘtre limitĂ©e Ă  cause de limitations cinĂ©tiques ou Ă  la prĂ©sence d'Ă©lĂ©ments qui piĂ©geraient le cĂ©sium (molybdĂšne, bore). Des expĂ©riences de laboratoire dans un montage spĂ©cialement conçu reproduisent la chimie de mĂ©langes CsI/MoO3 et CsI/H3BO3 sous vapeur d'eau entre 1600°C (tempĂ©rature et 150°C. Les aĂ©rosols et les gaz prĂ©sents Ă  150°C sont piĂ©gĂ©s sĂ©parĂ©ment. Les analyses des phases condensĂ©es et aĂ©rosols par MEBE-EDX, microspectromĂ©trie Raman, ICP-MS et XPS ont permis d'identifier des particules d'aĂ©rosols submicroniques collectĂ©s Ă  150°C. Les analyses des gaz piĂ©gĂ©s en solution par ICP-MS et spectroscopie UV-visible traduisent l'existence d'iode gazeux pour les deux systĂšmes Ă©tudiĂ©s {Cs, I, Mo, O, H} et {Cs, I, B, O, H}. La modĂ©lisation de la chimie et du transport des espĂšces gazeuses et particulaires pour les deux systĂšmes dans la ligne expĂ©rimentale a Ă©tĂ© rĂ©alisĂ©e Ă  l'aide du code de calcul SOPHAEROS dĂ©veloppĂ© Ă  l'IRSN. Les rĂ©sultats expĂ©rimentaux ont ainsi pu ĂȘtre comparĂ©s aux rĂ©sultats des simulations

    CFAO (les procédés générateurs)

    No full text
    BREST-BU MĂ©decine-Odontologie (290192102) / SudocPARIS-BIUM (751062103) / SudocSudocFranceF

    Chimie de l'iode et composition des aérosols dans le circuit primaire d'un réacteur nucléaire en situation d'accident grave

    No full text
    En cas d'accident grave sur un rĂ©acteur Ă  eau sous pression, l'Ă©valuation de la quantitĂ© d'iode susceptible d'ĂȘtre rejetĂ©e dans l'environnement revĂȘt une grande importance du fait de la radiotoxicitĂ© et du caractĂšre volatil de cet Ă©lĂ©ment. Le rejet d'iode du cƓur du rĂ©acteur endommagĂ© et son transport dans les diffĂ©rentes parties du rĂ©acteur jusqu'Ă  l'enceinte de confinement, ont Ă©tĂ© largement Ă©tudiĂ©s, en particulier dans les expĂ©riences PhĂ©bus-FB. A ce jour, les connaissances acquises et les modĂšles utilisĂ©s ne permettent pas de rendre compte complĂštement du comportement de l'iode observĂ© lors d'essais Ă  grande Ă©chelle. Une hypothĂšse est que l'iode gazeux proviendrait du circuit primaire Ă  cause de processus qui limiteraient la formation d'iodure de cĂ©sium. La formation d'iodure de cĂ©sium pourrait ĂȘtre limitĂ©e Ă  cause de limitations cinĂ©tiques ou Ă  la prĂ©sence d'Ă©lĂ©ments qui piĂ©geraient le cĂ©sium (molybdĂšne, bore). Des expĂ©riences de laboratoire dans un montage spĂ©cialement conçu reproduisent la chimie de mĂ©langes CsI/MoO3 et CsI/H3BO3 sous vapeur d'eau entre 1600C (tempĂ©rature et 150C. Les aĂ©rosols et les gaz prĂ©sents Ă  150C sont piĂ©gĂ©s sĂ©parĂ©ment. Les analyses des phases condensĂ©es et aĂ©rosols par MEBE-EDX, microspectromĂ©trie Raman, ICP-MS et XPS ont permis d'identifier des particules d'aĂ©rosols submicroniques collectĂ©s Ă  150C. Les analyses des gaz piĂ©gĂ©s en solution par ICP-MS et spectroscopie UV-visible traduisent l'existence d'iode gazeux pour les deux systĂšmes Ă©tudiĂ©s {Cs, I, Mo, O, H} et {Cs, I, B, O, H}. La modĂ©lisation de la chimie et du transport des espĂšces gazeuses et particulaires pour les deux systĂšmes dans la ligne expĂ©rimentale a Ă©tĂ© rĂ©alisĂ©e Ă  l'aide du code de calcul SOPHAEROS dĂ©veloppĂ© Ă  l'IRSN. Les rĂ©sultats expĂ©rimentaux ont ainsi pu ĂȘtre comparĂ©s aux rĂ©sultats des simulations.In case of a severe accident on a nuclear reactor, radioactive iodine may be released into the environment, impacting significantly the radiological consequences. Determination of the amount released, and of the physical state of iodine (gaseous form or solid aerosol form), is thus a major issue. The release of iodine from the damaged reactor core and its transport in the different parts of the reactor up to the reactor containment, have been extensively studied, particularly in the PhĂ©bus-FP large scale experiments. PhĂ©bus-FP results notably showed that a significant fraction of iodine under gaseous form can reach the containment. The models used in severe accident codes did not (and still does not) fully account for this iodine speciation. A likely explanation is that iodine keeps a gaseous form up to the containment due to some processes that limit the formation of caesium iodide in the reactor coolant system (RCS) (caesium iodide was assumed to be the dominant form of iodine in the RCS). Caesium iodide formation would be limited due to chemical kinetic limitations and due to the presence of other elements (molybdenum or boron) responsible for trapping the caesium. An experimental research program has been developed with the aim to study the chemical behaviour of iodine during its transport in the RCS, with presence of steam, caesium and molybdenum or boron. Experiments are compared to calculations performed with the IRSN severe accident code ASTEC where a chemical kinetic model has been implementedSAVOIE-SCD - Bib.Ă©lectronique (730659901) / SudocGRENOBLE1/INP-Bib.Ă©lectronique (384210012) / SudocGRENOBLE2/3-Bib.Ă©lectronique (384219901) / SudocSudocFranceF

    Place de la craniectomie décompressive dans la prise en charge des traumatismes crùniens graves (expérience nantaise depuis 2005)

    No full text
    La craniectomie dĂ©compressive est une technique proposĂ©e dans la prise en charge du traumatisme crĂąnien grave pour lutter contre l'hypertension intracrĂąnienne rĂ©fractaire au traitement mĂ©dical. Il s'agit d'une Ă©tude rĂ©trospective, monocentrique concernant l'ensemble des patients qui ont bĂ©nĂ©ficiĂ© d'une craniectomie dĂ©compressive avec rĂ©alisation d'un volet frontopariĂ©totemporal uni ou bilatĂ©ral. 60 patients, ĂągĂ©s en moyenne de 23 ans ont Ă©tĂ© inclus de janvier 2005 Ă  dĂ©cembre 2011. Ils ont Ă©tĂ© suivis en moyenne 17 mois avec Ă  long terme 17 patients dĂ©cĂ©dĂ©s, 6 en Ă©tat vĂ©gĂ©tatif ou pauci-relationnel, 7 avec un handicap sĂ©vĂšre, 16 avec un handicap modĂ©rĂ© et 14 avec une bonne rĂ©cupĂ©ration soit un total de 50% de rĂ©sultats favorables. Le score de Glasgow est le seul facteur pronostique fonctionnel identifiĂ©. Si les sĂ©ries de la littĂ©rature rapportent des rĂ©sultats hĂ©tĂ©rogĂšnes, notre sĂ©rie semble montrer un intĂ©rĂȘt Ă  cette technique.NANTES-BU MĂ©decine pharmacie (441092101) / SudocSudocFranceF
    • 

    corecore