294 research outputs found

    Selection by AZT and Rapid Replacement in the Absence of Drugs of HIV Type 1 Resistant to Multiple Nucleoside Analogs

    Get PDF
    We studied the intrahost evolution and dynamics of a multidrug-resistant HIV-1, which contains an insertion of two amino acids (aa) and several aa changes within the reverse transcriptase (RT) gene. From an individual receiving intermittent therapy, sequences of 231 full-length molecular clones of HIV-1 RT were obtained from serum-derived viruses at 12 consecutive time points over a period of 6 years, 17 to 20 clones per time point. In the 3.5-year period prior to the first course of therapy, only wild-type (wt) viruses were found. As soon as 6 months after the start of zidovudine (AZT) monotherapy, all viruses contained an insertion of two aa between positions 68 and 69 of the RT and aa changes at positions 67 and 215, a combination conferring resistance to multiple nucleoside analogs. After termination of therapy, the insertion mutants were rapidly and completely replaced by the wt viruses. In turn, the insertion mutants replaced the wt viruses after initiation of therapy with 3TC, d4T, and saquinavir. After termination of triple therapy, the wt viruses completely replaced the mutants within 1 month, which is markedly faster than has been observed earlier for the replacement of AZT-resistant viruses. Fast replacements of the mutant virus populations after termination of therapy indicate gross competitive disadvantage of the insertion mutant in the absence of therapy, which we estimated by using several models. The insertion mutants attained high virus loads, demonstrating that virus load cannot be used as a direct measure of virus fitness

    Analysis of the antigen- and mitogen-induced differentiation of B lymphocytes from asymptomatic human immunodeficiency virus-seropositive male homosexuals. Discrepancy between T cell-dependent and T cell-independent activation.

    Get PDF
    Five asymptomatic human immunodeficiency virus (HIV)-seropositive ; male homosexuals were immunized with the recall antigens tetanus toxoid (TT) and the three types of poliovirus present in diphtheria, tetanus, and polio vaccine. Four weeks after immunization, the in vivo response to booster immunization, the in vitro pokeweed mitogen (PWM)-induced IgG secretion, and the in vitro T cell-dependent and T cell-independent antigen-induced antibody response were assayed. Increase in serum antibody titer to TT and polioviru

    Matrix-Mā„¢ adjuvation broadens protection induced by seasonal trivalent virosomal influenza vaccine

    Get PDF
    Background: Influenza virus infections are responsible for significant morbidity worldwide and therefore it remains a high priority to develop more broadly protective vaccines. Adjuvation of current seasonal influenza vaccines has the potential to achieve this goal. Methods: To assess the immune potentiating properties of Matrix-M (TM), mice were immunized with virosomal trivalent seasonal vaccine adjuvated with Matrix-M (TM). Serum samples were isolated to determine the hemagglutination inhibiting (HAI) antibody titers against vaccine homologous and heterologous strains. Furthermore, we assess whether adjuvation with Matrix-M (TM) broadens the protective efficacy of the virosomal trivalent seasonal vaccine against vaccine homologous and heterologous influenza viruses. Results: Matrix-M (TM) adjuvation enhanced HAI antibody titers and protection against vaccine homologous strains. Interestingly, Matrix-M (TM) adjuvation also resulted in HAI antibody titers against heterologous influenza B strains, but not against the tested influenza A strains. Even though the protection against heterologous influenza A was induced by the adjuvated vaccine, in the absence of HAI titers the protection was accompanied by severe clinical scores and body weight loss. In contrast, in the presence of heterologous HAI titers full protection against the heterologous influenza B strain without any disease symptoms was obtained. Conclusion: The results of this study emphasize the promising potential of a Matrix-M (TM)-adjuvated seasonal trivalent virosomal influenza vaccine. Adjuvation of trivalent virosomal vaccine does not only enhance homologous protection, but in addition induces protection against heterologous strains and thus provides overall more potent and broad protective immunit

    New Class of Monoclonal Antibodies against Severe Influenza: Prophylactic and Therapeutic Efficacy in Ferrets

    Get PDF
    Background: The urgent medical need for innovative approaches to control influenza is emphasized by the widespread resistance of circulating subtype H1N1 viruses to the leading antiviral drug oseltamivir, the pandemic threat posed by the occurrences of human infections with highly pathogenic avian H5N1 viruses, and indeed the evolving swine-origin H1N1 influenza pandemic. A recently discovered class of human monoclonal antibodies with the ability to neutralize a broad spectrum of influenza viruses (including H1, H2, H5, H6 and H9 subtypes) has the potential to prevent and treat influenza in humans. Here we report the latest efficacy data for a representative antibody of this novel class. Methodology/Principal Findings: We evaluated the prophylactic and therapeutic efficacy of the human monoclonal antibody CR6261 against lethal challenge with the highly pathogenic avian H5N1 virus in ferrets, the optimal model of human influenza infection. Survival rates, clinically relevant disease signs such as changes in body weight and temperature, virus replication in lungs and upper respiratory tract, as well as macro- and microscopic pathology were investigated. Prophylactic administration of 30 and 10 mg/kg CR6261 prior to viral challenge completely prevented mortality, weight loss and reduced the amount of infectious virus in the lungs by more than 99.9%, abolished shedding of virus in phar

    Comparison of an anti-rabies human monoclonal antibody combination with human polyclonal anti-rabies immune globulin

    Get PDF
    The World Health Organization estimates human mortality from endemic canine rabies to be 55,000 deaths/ year. Limited supply hampers the accessibility of appropriate lifesaving treatment, particularly in areas where rabies is endemic. Anti-rabies antibodies are key to protection against lethal rabies. Currently, only human and equine polyclonal anti-rabies immune globulin (HRIG and ERIG) is available. Replacement of HRIG and ERIG with a safer and more widely available product is recommended. We have recently identified a combination of 2 human monoclonal antibodies (MAbs), CR57 and CR4098, that has high potential. We here describe a head-to-head comparison between an CR57/CR4098 MAb cocktail and HRIG. The MAb cocktail neutralized all viruses from a panel of 26 representative street rabies virus isolates. In combination with vaccine, the MAb cocktail protected Syrian hamsters against lethal rabies when administered 24 h after exposure, comparable with the results obtained with HRIG. Furthermore, the MAb cocktail did not interfere with rabies vaccine differently from HRIG. These results demonstrate that the human MAb cocktail of CR57 and CR4098 is a safe and efficacious alternative to RIG in rabies postexposure prophylaxis. A recent World Health Organization publication estimated human mortality from endemic canine rabies to be 55,000 deaths/year Mouse MAbs, as well as human MAbs, have been shown to protect rodents from lethal RV challeng

    Virology Experts in the Boundary Zone Between Science, Policy and the Public: A Biographical Analysis

    Get PDF
    This article aims to open up the biographical black box of three experts working in the boundary zone between science, policy and public debate. A biographical-narrative approach is used to analyse the roles played by the virologists Albert Osterhaus, Roel Coutinho and Jaap Goudsmit in policy and public debate. These figures were among the few leading virologists visibly active in the Netherlands during the revival of infectious diseases in the 1980s. Osterhaus and Coutinho in particular are still the key figures today, as demonstrated during the outbreak of novel influenza A (H1N1). This article studies the various political and communicative challenges and dilemmas encountered by these three virologists, and discusses the way in which, strategically or not, they handled those challenges and dilemmas during the various stages of the fieldā€™s recent history. Important in this respect is their pursuit of a public role that is both effective and credible. We will conclude with a reflection on the H1N1 pandemic, and the historical and biographical ties between emerging governance arrangements and the experts involved in the development of such arrangements

    Immune Protection of Nonhuman Primates against Ebola Virus with Single Low-Dose Adenovirus Vectors Encoding Modified GPs

    Get PDF
    BACKGROUND: Ebola virus causes a hemorrhagic fever syndrome that is associated with high mortality in humans. In the absence of effective therapies for Ebola virus infection, the development of a vaccine becomes an important strategy to contain outbreaks. Immunization with DNA and/or replication-defective adenoviral vectors (rAd) encoding the Ebola glycoprotein (GP) and nucleoprotein (NP) has been previously shown to confer specific protective immunity in nonhuman primates. GP can exert cytopathic effects on transfected cells in vitro, and multiple GP forms have been identified in nature, raising the question of which would be optimal for a human vaccine. METHODS AND FINDINGS: To address this question, we have explored the efficacy of mutant GPs from multiple Ebola virus strains with reduced in vitro cytopathicity and analyzed their protective effects in the primate challenge model, with or without NP. Deletion of the GP transmembrane domain eliminated in vitro cytopathicity but reduced its protective efficacy by at least one order of magnitude. In contrast, a point mutation was identified that abolished this cytopathicity but retained immunogenicity and conferred immune protection in the absence of NP. The minimal effective rAd dose was established at 10(10) particles, two logs lower than that used previously. CONCLUSIONS: Expression of specific GPs alone vectored by rAd are sufficient to confer protection against lethal challenge in a relevant nonhuman primate model. Elimination of NP from the vaccine and dose reductions to 10(10) rAd particles do not diminish protection and simplify the vaccine, providing the basis for selection of a human vaccine candidate

    Gene expression profile of AIDS-related Kaposi's sarcoma

    Get PDF
    BACKGROUND: Kaposi's Sarcoma (KS) is a proliferation of aberrant vascular structures lined by spindle cells, and is caused by a gammaherpes virus (HHV8/KSHV). Its course is aggravated by co-infection with HIV-1, where the timing of infection with HIV-1 and HHV8 is important for the clinical outcome. METHODS: In order to better understand the pathogenesis of KS, we have analysed tissue from two AIDS-KS lesions, and from normal skin by serial analysis of gene expression (SAGE). Semi-quantitative RT-PCR was then used to validate the results. RESULTS: The expression profile of AIDS-related KS (AIDS-KS) reflects an active process in the skin. Transcripts of HHV8 were found to be very low, and HIV-1 mRNA was not detected by SAGE, although it could be found using RT-PCR. Comparing the expression profile of AIDS-KS tissue with publicly available SAGE libraries suggested that AIDS-KS mRNA levels are most similar to those in an artificially mixed library of endothelial cells and leukocytes, in line with the description of KS lesions as containing spindle cells with endothelial characteristics, and an inflammatory infiltrate. At least 64 transcripts were found to be significantly elevated, and 28 were statistically downregulated in AIDS-KS compared to normal skin. Five of the upregulated mRNAs, including Tie 1 and sialoadhesin/CD169, were confirmed by semi-quantitative PCR to be elevated in additional AIDS-KS biopsies. Antibodies to sialoadhesin/CD169, a known marker of activated macrophages, were shown to specifically label tumour macrophages. CONCLUSION: The expression profile of AIDS-KS showed 64 genes to be significantly upregulated, and 28 genes downregulated, compared with normal skin. One of the genes with increased expression was sialoadhesin (CD169). Antibodies to sialoadhesin/CD169 specifically labelled tumour-associated macrophages, suggesting that macrophages present in AIDS-KS lesions belong to a subset of human CD169+ macrophages

    A pan-influenza monoclonal antibody neutralizes H5 strains and prophylactically protects through intranasal administration

    Get PDF
    Avian A(H5N1) influenza virus poses an elevated zoonotic threat to humans, and no pharmacological products are currently registered for fast-acting pre-exposure protection in case of spillover leading to a pandemic. Here, we show that an epitope on the stem domain of H5 hemagglutinin is highly conserved and that the human monoclonal antibody CR9114, targeting that epitope, potently neutralizes all pseudotyped H5 viruses tested, even in the rare case of substitutions in its epitope. Further, intranasal administration of CR9114 fully protects mice against A(H5N1) infection at low dosages, irrespective of pre-existing immunity conferred by the quadrivalent seasonal influenza vaccine. These data provide a proof-of-concept for broad, pre-exposure protection against a potential future pandemic using the intranasal administration route. Studies in humans should assess if autonomous administration of a broadly-neutralizing monoclonal antibody is safe and effective and can thus contribute to pandemic preparedness
    • ā€¦
    corecore