696 research outputs found
Analysis of the low-energy differential cross sections of the CHAOS Collaboration
This paper presents the results of an analysis of the low-energy
differential cross sections, acquired by the CHAOS Collaboration at TRIUMF
\cite{chaos,denz}. We first analyse separately the and the
elastic-scattering measurements on the basis of standard low-energy
parameterisations of the - and p-wave -matrix elements. After the removal
of the outliers, we subject the truncated elastic-scattering
databases into a common optimisation scheme using the ETH model \cite{glmbg};
the optimisation failed to produce reasonable values for the model parameters.
We conclude that the problems we have encountered in the analysis of these data
are due to the shape of the angular distributions of their
differential cross sections
Multiple Conclusion Rules in Logics with the Disjunction Property
We prove that for the intermediate logics with the disjunction property any
basis of admissible rules can be reduced to a basis of admissible m-rules
(multiple-conclusion rules), and every basis of admissible m-rules can be
reduced to a basis of admissible rules. These results can be generalized to a
broad class of logics including positive logic and its extensions, Johansson
logic, normal extensions of S4, n-transitive logics and intuitionistic modal
logics
Identification of a protein encoded in the EB-viral open reading frame BMRF2
Using monospecific rabbit sera against a peptide derived from a potential antigenic region of the Epstein-Barr viral amino acid sequence encoded in the open reading frame BMRF2 we could identify a protein-complex of 53/55 kDa in chemically induced B95-8, P3HR1 and Raji cell lines. This protein could be shown to be membrane-associated, as predicted by previous computer analysis of the secondary structure and hydrophilicity pattern, and may be a member of EBV-induced membrane proteins in lytically infected cells
Density dependence of the s-wave repulsion in pionic atoms
Several mechanisms of density dependence of the s-wave repulsion in pionic
atoms, beyond the conventional model, are tested by parameter fits to a large
(106 points) set of data from O to U, including `deeply bound'
states in Pb. Special attention is paid to the proper choice of nuclear
density distributions. A density-dependent isovector scattering amplitude
suggested recently by Weise to result from a density dependence of the pion
decay constant is introduced and found to account for most of the so-called
anomalous repulsion. The presence of such an effect might indicate partial
chiral symmetry restoration in dense matter. The anomalous repulsion is fully
accounted for when an additional relativistic impulse approximation term is
included in the potential.Comment: 18 pages, 5 figures, version 2 (extended
Consistent off-shell vertex and nucleon self-energy
We present a consistent calculation of half-off-shell form factors in the
pion-nucleon vertex and the nucleon self-energy. Numerical results are
presented. Near the on-shell point the pion-nucleon vertex is dominated by the
pseudovector coupling, while at large nucleon invariant masses we find a
sizable pseudoscalar admixture.Comment: 23 pages, 7 figures, REVTeX, submitted to Phys. Rev. C, replaced with
corrected versio
Compton scattering on the nucleon at intermediate energies and polarizabilities in a microscopic model
A microscopic calculation of Compton scattering on the nucleon is presented
which encompasses the lowest energies -- yielding nucleon polarizabilities --
and extends to energies of the order of 600 MeV. We have used the covariant
"Dressed K-Matrix Model" obeying the symmetry properties which are appropriate
in the different energy regimes. In particular, crossing symmetry, gauge
invariance and unitarity are satisfied. The extent of violation of analyticity
(causality) is used as an expansion parameter.Comment: 35 pages, 15 figures, using REVTeX. Modified version to be published
in Phys. Rev. C, more extensive comparison with data for Compton scattering,
all results unchange
Towards an understanding of isospin violation in pion-nucleon scattering
We investigate isospin breaking in low-energy pion-nucleon scattering in the
framework of chiral perturbation theory. This work extends the systematic
analysis of [1] to the energy range above threshold. Various relations, which
identically vanish in the limit of isospin symmetry, are used to quantify
isospin breaking effects. We study the energy dependence of the S- and P-wave
projections of these ratios and find dramatic effects in the S-waves of those
two relations which are given in terms of isoscalar quantities only. This
effect drops rather quickly with growing center-of-mass energy.Comment: 12 pp, REVTeX, 8 figs, FZJ-IKP(TH)-2000-2
Dressing the nucleon in a dispersion approach
We present a model for dressing the nucleon propagator and vertices. In the
model the use of a K-matrix approach (unitarity) and dispersion relations
(analyticity) are combined. The principal application of the model lies in
pion-nucleon scattering where we discuss effects of the dressing on the phase
shifts.Comment: 17 pages, using REVTeX, 6 figure
Phase-shift analysis of low-energy elastic-scattering data
Using electromagnetic corrections previously calculated by means of a
potential model, we have made a phase-shift analysis of the
elastic-scattering data up to a pion laboratory kinetic energy of 100 MeV. The
hadronic interaction was assumed to be isospin invariant. We found that it was
possible to obtain self-consistent databases by removing very few measurements.
A pion-nucleon model was fitted to the elastic-scattering database obtained
after the removal of the outliers. The model-parameter values showed an
impressive stability when the database was subjected to different criteria for
the rejection of experiments. Our result for the pseudovector
coupling constant (in the standard form) is . The six
hadronic phase shifts up to 100 MeV are given in tabulated form. We also give
the values of the s-wave scattering lengths and the p-wave scattering volumes.
Big differences in the s-wave part of the interaction were observed when
comparing our hadronic phase shifts with those of the current GWU solution. We
demonstrate that the hadronic phase shifts obtained from the analysis of the
elastic-scattering data cannot reproduce the measurements of the
charge-exchange reaction, thus corroborating past evidence that the hadronic
interaction violates isospin invariance. Assuming the validity of the result
obtained within the framework of chiral perturbation theory, that the mass
difference between the - and the -quark has only a very small effect on
the isospin invariance of the purely hadronic interaction, the
isospin-invariance violation revealed by the data must arise from the fact that
we are dealing with a hadronic interaction which still contains residual
effects of electromagnetic origin.Comment: 43 pages, 6 figure
- …
