1,694 research outputs found
The first giant flare from SGR 1806-20: observations with the INTEGRAL SPI Anti-Coincidence Shield
A giant flare from the Soft Gamma-ray Repeater SGR 1806-20 has been detected
by several satellites on 2004 December 27. This tremendous outburst, the first
one observed from this source, was a hundred times more powerful than the two
previous giant flares from SGR 0525-66 and SGR 1900+14. We report the results
obtained for this event with the Anticoincidence Shield of the SPI spectrometer
on board the INTEGRAL satellite, which provides a high-statistics light curve
at E>~80 keV. The flare started with a very strong pulse, which saturated the
detector for ~0.7 s, and whose backscattered radiation from the Moon was
detected 2.8 s later. This was followed by a ~400 s long tail modulated at the
neutron star rotation period of 7.56 s. The tail fluence corresponds to an
energy in photons above 3 keV of 1.6x10^44 (d/15 kpc)^2 erg. This is of the
same order of the energy emitted in the pulsating tails of the two giant flares
seen from other soft repeaters, despite the hundredfold larger overall emitted
energy of the SGR 1806-20 giant flare. Long lasting (~1 hour) hard X-ray
emission, decaying in time as t^-0.85, and likely associated to the SGR 1806-20
giant flare afterglow has also been detected.Comment: revised version - Accepted for publication on The Astrophysical
Journal Letter
GRB Observed by IBIS/PICsIT in the MeV Energy Range
We present the preliminary results of a systematic search for GRB and other
transients in the publicly available data for the IBIS/PICsIT (0.2-10 MeV)
detector on board INTEGRAL. Lightcurves in 2-8 energy bands with time
resolution from 1 to 62.5 ms have been collected and an analysis of spectral
and temporal characteristics has been performed. This is the nucleus of a
forthcoming first catalog of GRB observed by PICsIT.Comment: 6 pages, 3 figures. Poster presented at COSPAR 2008. Advaces in Space
Research, accepted for publicatio
Microstructure of Mica Glass-Ceramics and Interface Reactions between Mica Glass-Ceramics and Bone
This review paper characterizes glass-ceramics containing mica as main crystal phase. The phase formation reactions in dependence of the chemical composition and the microstructure are shown. Microstructure of mica glass-ceramics has been studied by electron replica and scanning electron microscopic (SEM) techniques.
Mica glass-ceramics have previously been developed in Si02-B20rA120rMgO-F--base glasses. The material is machinable because of the precipitation of micas of fluorophlogopite-type. Also, a machinable glass-ceramic for dental applications was developed based on KMg2_5(Si40 10)F2-micas. We developed mica glass-ceramics in the Si02-Al20rMgO-NaiO-K20-F glass system. Phase formation within these glasses was observed by SEM. A double controlled nucleation and crystallization of mica and apatite crystals was possible in glasses of the SiOrMgO-NaiO-K20-F-CaO-P20s-(Al20 3) system. The main crystal phases of phlogopite-type were characterized by SEM and energy dispersive x-ray spectroscopy (EDS) and apatite crystals Ca5(P04)J(OH,F) were analyzed by X-ray diffraction measurements. The glass-ceramics are useful biomaterials for bone substitution. EDS analysis shows the ion exchange between glass-ceramics and body fluids. The interface reaction is characterized by formation of a small phosphate layer, and particularly by alkali ion exchange
In-flight calibration of the INTEGRAL/IBIS mask
Since the release of the INTEGRAL Offline Scientific Analysis (OSA) software
version 9.0, the ghost busters module has been introduced in the INTEGRAL/IBIS
imaging procedure, leading to an improvement of the sensitivity around bright
sources up to a factor of 7. This module excludes in the deconvolution process
the IBIS/ISGRI detector pixels corresponding to the projection of a bright
source through mask elements affected by some defects. These defects are most
likely associated with screws and glue fixing the IBIS mask to its support.
Following these major improvements introduced in OSA 9, a second order
correction is still required to further remove the residual noise, now at a
level of 0.2-1% of the brightest source in the field of view. In order to
improve our knowledge of the IBIS mask transparency, a calibration campaign has
been carried out during 2010-2012. We present here the analysis of these data,
together with archival observations of the Crab and Cyg X-1, that allowed us to
build a composite image of the mask defects and to investigate the origin of
the residual noise in the IBIS/ISGRI images. Thanks to this study, we were able
to point out a simple modification of the ISGRI analysis software that allows
to significantly improve the quality of the images in which bright sources are
detected at the edge of the field of view. Moreover, a refinement of the area
excluded by the ghost busters module is considered, and preliminary results
show improvements to be further tested. Finally, this study indicates further
directions to be investigated for improving the ISGRI sensitivity, such as
taking into account the thickness of the screws in the mask model or studying
the possible discrepancy between the modeled and actual mask element bridges.Comment: accepted for publication in the proceedings of "An INTEGRAL view of
the high-energy sky (the first 10 years)" 9th INTEGRAL Workshop, October
15-19, 2012, Paris, France, in Proceedings of Science (INTEGRAL 2012), Eds.
A. Goldwurm, F. Lebrun and C. Winkler,
(http://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=176), id 154; 6 pages, 4
figures, see the PoS website for the full resolution versio
The Unique Frequency Spectrum of the Blazhko RRc Star LS Her
The Blazhko effect in RR Lyrae stars is still poorly understood
theoretically. Stars with multiple Blazhko periods or in which the Blazhko
effect itself varies are particularly challenging. This study investigates the
Blazhko effect in the RRc star LS Her. Detailed VRI CCD photometry has been
performed on 63 nights during six months. LS Her is confirmed to have a Blazhko
period of 12.75+/-0.02 days. However, where normally the side frequencies of
the Blazhko triplet are expected, an equidistant group of three frequencies is
found on both sides of the main pulsation frequency. As a consequence the
period and amplitude of the Blazhko effect itself vary in a cycle of 109+/-4
days. LS Her is a unique object turning out to be very important in the
verification of the theories for the Blazhko effect.Comment: Accepted for publication in MNRA
Evaluation of the deuterium dilution method to estimate body composition in the barnacle goose:Accuracy and minimum equilibration time
We examined body composition in barnacle geese (Branta leucopsis) by proximate carcass analysis and by deuterium isotope dilution. We studied the effect of isotope equilibration time on the accuracy of total body water (TBW) estimates and evaluated models to predict fat-free mass (FFM) and fat mass (FM) from different measurements varying in their level of invasiveness. Deuterium enrichment determined at 45, 90, and 180 min after isotope injection did not differ significantly. At all sampling intervals, isotope dilution spaces (TBW(d)) consistently overestimated body water determined by carcass analysis (TBW(c)). However, variance in the deviation from actual TBW was higher at the 45-min sampling interval, whereas variability was the same at 90 and 180 min, indicating that 90 min is sufficient time to allow for adequate equilibration. At 90 min equilibration time, deuterium isotope dilution overestimated TBW(c) by 7.1% +/- 2.6% (P <0.001, paired t-test, n = 20). This overestimate was consistent over the range of TBW studied, and TBW(c) could thus be predicted from TBW(d) (r(2) = 0.976, P <0.001). Variation in TBW(c) and TBW(d) explained, respectively, 99% and 98% of the variation in FFM. FM could be predicted with a relative error of ca. 10% from TBW estimates in combination with body mass (BM). In contrast, BM and external body measurements allowed only poor prediction. Abdominal fat fresh mass was highly correlated to total FM and, if the carcass is available, allows simple means of fat prediction without dissecting the entire specimen
Gamma Ray Bursts from the early Universe: predictions for present-day and future instruments
Long Gamma Ray Bursts (GRBs) constitute an important tool to study the
Universe near and beyond the epoch of reionization. We delineate here the
characteristics of an 'ideal' instrument for the search of GRBs at z>6-10. We
find that the detection of these objects requires soft band detectors with a
high sensitivity and moderately large FOV. In the light of these results, we
compare available and planned GRB missions, deriving conservative predictions
on the number of high-z GRBs detectable by these instruments along with the
maximum accessible redshift. We show that the Swift satellite will be able to
detect various GRBs at z>6, and likely at z>10 if the trigger threshold is
decreased by a factor of ~2. Furthermore, we find that INTEGRAL and GLAST are
not the best tool to detect bursts at z>6: the former being limited by the
small FOV, and the latter by its hard energy band and relatively low
sensitivity. Finally, future missions (SVOM, EDGE, but in particular EXIST)
will provide a good sample of GRBs at z>6 in a few years of operation.Comment: 6 pages, 2 figures, MNRAS in pres
Short GRBs at the dawn of the gravitational wave era
We derive the luminosity function and redshift distribution of short Gamma
Ray Bursts (SGRBs) using (i) all the available observer-frame constraints (i.e.
peak flux, fluence, peak energy and duration distributions) of the large
population of Fermi SGRBs and (ii) the rest-frame properties of a complete
sample of Swift SGRBs. We show that a steep with a>2.0
is excluded if the full set of constraints is considered. We implement a Monte
Carlo Markov Chain method to derive the and functions
assuming intrinsic Ep-Liso and Ep-Eiso correlations or independent
distributions of intrinsic peak energy, luminosity and duration. To make our
results independent from assumptions on the progenitor (NS-NS binary mergers or
other channels) and from uncertainties on the star formation history, we assume
a parametric form for the redshift distribution of SGRBs. We find that a
relatively flat luminosity function with slope ~0.5 below a characteristic
break luminosity ~3 erg/s and a redshift distribution of SGRBs
peaking at z~1.5-2 satisfy all our constraints. These results hold also if no
Ep-Liso and Ep-Eiso correlations are assumed. We estimate that, within ~200 Mpc
(i.e. the design aLIGO range for the detection of GW produced by NS-NS merger
events), 0.007-0.03 SGRBs yr should be detectable as gamma-ray events.
Assuming current estimates of NS-NS merger rates and that all NS-NS mergers
lead to a SGRB event, we derive a conservative estimate of the average opening
angle of SGRBs: ~3-6 deg. Our luminosity function implies an
average luminosity L~1.5 erg/s, nearly two orders of magnitude
higher than previous findings, which greatly enhances the chance of observing
SGRB "orphan" afterglows. Efforts should go in the direction of finding and
identifying such orphan afterglows as counterparts of GW events.Comment: 13 pages, 5 figures, 2 tables. Accepted for publication in Astronomy
& Astrophysics. Figure 5 and angle ranges corrected in revised versio
The discovery, monitoring and environment of SGR J1935+2154
We report on the discovery of a new member of the magnetar class, SGR
J1935+2154, and on its timing and spectral properties measured by an extensive
observational campaign carried out between July 2014 and March 2015 with
Chandra and XMM-Newton (11 pointings). We discovered the spin period of SGR
J1935+2154 through the detection of coherent pulsations at a period of about
3.24s. The magnetar is slowing-down at a rate of 1.43(1)x10^{-11} s/s and with
a decreasing trend due to a negative second period derivative of
-3.5(7)x10^{-19} s/s^2. This implies a surface dipolar magnetic field strength
of about 2.2x10^{14} G, a characteristic age of about 3.6kyr and, a spin-down
luminosity L_{sd} of about 1.7x10^{34} erg/s. The source spectrum is well
modelled by a blackbody with temperature of about 500eV plus a power-law
component with photon index of about 2. The source showed a moderate long-term
variability, with a flux decay of about 25\% during the first four months since
its discovery, and a re-brightening of the same amount during the second four
months. The X-ray data were also used to study the source environment. In
particular, we discovered a diffuse emission extending on spatial scales from
about 1" up to at least 1' around SGR J1935+2154 both in Chandra and XMM-Newton
data. This component is constant in flux (at least within uncertainties) and
its spectrum is well modelled by a power-law spectrum steeper than that of the
pulsar. Though a scattering halo origin seems to be more probable we cannot
exclude that part, or all, of the diffuse emission is due to a pulsar wind
nebula.Comment: To appear in MNRAS; 10 pages, 3 color figures, 4 table
Models for Modules
We recall the structure of the indecomposable sl(2) modules in the
Bernstein-Gelfand-Gelfand category O. We show that all these modules can arise
as quantized phase spaces of physical models. In particular, we demonstrate in
a path integral discretization how a redefined action of the sl(2) algebra over
the complex numbers can glue finite dimensional and infinite dimensional
highest weight representations into indecomposable wholes. Furthermore, we
discuss how projective cover representations arise in the tensor product of
finite dimensional and Verma modules and give explicit tensor product
decomposition rules. The tensor product spaces can be realized in terms of
product path integrals. Finally, we discuss relations of our results to brane
quantization and cohomological calculations in string theory.Comment: 18 pages, 6 figure
- …