45 research outputs found

    Self-formed quantum wires and dots in GaAsP-GaAsP core-shell nanowires

    Get PDF
    Quantum structures designed using nanowires as a basis are excellent candidates to achieve novel design architectures. Here, triplets of quantum wires (QWRs) that form at the core–shell interface of GaAsP–GaAsP nanowires are reported. Their formation, on only three of the six vertices of the hexagonal nanowire, is governed by the three-fold symmetry of the cubic crystal on the (111) plane. In twinned nanowires, the QWRs are segmented, to alternating vertices, forming quantum dots (QDs). Simulations confirm the possibility of QWR and QD-like behavior from the respective regions. Optical measurements confirm the presence of two different types of quantum emitters in the twinned individual nanowires. The possibility to control the relative formation of QWRs or QDs, and resulting emission wavelengths of the QDs, by controlling the twinning of the nanowire core, opens up new possibilities for designing nanowire devices

    Reconciling inflation with openness

    Full text link
    It is already understood that the increasing observational evidence for an open Universe can be reconciled with inflation if our horizon is contained inside one single huge bubble nucleated during the inflationary phase transition. In this frame of ideas, we show here that the probability of living in a bubble with the right Ω0\Omega_0 (now the observations require Ω0≈.2\Omega_0 \approx .2) can be comparable with unity, rather than infinitesimally small. For this purpose we modify both quantitatively and qualitatively an intuitive toy model based upon fourth order gravity. As this scheme can be implemented in canonical General Relativity as well (although then the inflation driving potential must be designed entirely ad hoc), inferring from the observations that Ω0<1\Omega_0 < 1 not only does not conflict with the inflationary paradigm, but rather supports therein the occurrence of a primordial phase transition.Comment: 4 pages, one postscript figure, to be published on Physical Review D PACS: 98.80. C

    STATIONARY SOLUTIONS IN BRANS-DICKE STOCHASTIC INFLATIONARY COSMOLOGY

    Get PDF
    In Brans-Dicke theory the Universe becomes divided after inflation into many exponentially large domains with different values of the effective gravitational constant. Such a process can be described by diffusion equations for the probability of finding a certain value of the inflaton and dilaton fields in a physical volume of the Universe. For a typical chaotic inflation potential, the solutions for the probability distribution never become stationary but grow forever towards larger values of the fields. We show here that a non-minimal conformal coupling of the inflaton to the curvature scalar, as well as radiative corrections to the effective potential, may provide a dynamical cutoff and generate stationary solutions. We also analyze the possibility of large nonperturbative jumps of the fluctuating inflaton scalar field, which was recently revealed in the context of the Einstein theory. We find that in the Brans--Dicke theory the amplitude of such jumps is strongly suppressed.Comment: 19 pages, LaTe

    Detection Limits for Super-Hubble Suppression of Causal Fluctuations

    Full text link
    We investigate to what extent future microwave background experiments might be able to detect a suppression of fluctuation power on large scales in flat and open universe models. Such suppression would arise if fluctuations are generated by causal processes, and a measurement of a small suppression scale would be problematic for inflation models, but consistent with many defect models. More speculatively, a measurement of a suppression scale of the order of the present Hubble radius could provide independent evidence for a fine-tuned inflation model leading to a low-density universe. We find that, depending on the primordial power spectrum, a suppression scale modestly larger than the visible Horizon can be detected, but that the detectability drops very rapidly with increasing scale. For models with two periods of inflation, there is essentially no possibility of detecting a causal suppression scale.Comment: 8 pages, 4 figures, revtex, In Press Physical Review D 200

    Cosmic String in the Supersymmetric CSKR Theory

    Full text link
    We study a cosmic string solution of an N=1-supersymmetric version of the Cremmer-Scherk-Kalb-Ramond (CSKR) Lagrangian coupled to a vector superfield by means of a topological mass term. The 2-form gauge potential is proposed to couple non-minimally to matter, here described by a chiral scalar superfield. The important outcome is that supersymmetry is kept exact both in the core and in the exterior region of the string. We contemplate the bosonic configurations and it can be checked that the solutions saturate the Bogomolnyi bound. A glimpse on the fermionic zero modes is also given.Comment: 14 pages, LaTeX, presented at the XXI "Encontro Nacional de Fisica de Particulas e Campos", Sao Lourenco, MG, Brazil, with zero modes adde

    Dark energy as a mirage

    Full text link
    Motivated by the observed cosmic matter distribution, we present the following conjecture: due to the formation of voids and opaque structures, the average matter density on the path of the light from the well-observed objects changes from Omega_M ~ 1 in the homogeneous early universe to Omega_M ~ 0 in the clumpy late universe, so that the average expansion rate increases along our line of sight from EdS expansion Ht ~ 2/3 at high redshifts to free expansion Ht ~ 1 at low redshifts. To calculate the modified observable distance-redshift relations, we introduce a generalized Dyer-Roeder method that allows for two crucial physical properties of the universe: inhomogeneities in the expansion rate and the growth of the nonlinear structures. By treating the transition redshift to the void-dominated era as a free parameter, we find a phenomenological fit to the observations from the CMB anisotropy, the position of the baryon oscillation peak, the magnitude-redshift relations of type Ia supernovae, the local Hubble flow and the nucleosynthesis, resulting in a concordant model of the universe with 90% dark matter, 10% baryons, no dark energy, 15 Gyr as the age of the universe and a natural value for the transition redshift z_0=0.35. Unlike a large local void, the model respects the cosmological principle, further offering an explanation for the late onset of the perceived acceleration as a consequence of the forming nonlinear structures. Additional tests, such as quantitative predictions for angular deviations due to an anisotropic void distribution and a theoretical derivation of the model, can vindicate or falsify the interpretation that light propagation in voids is responsible for the perceived acceleration.Comment: 33 pages, 2 figs; v2: minor clarifications, results unchanged; v3: matches the version published in General Relativity and Gravitatio

    Quantum Creation of an Open Inflationary Universe

    Get PDF
    We discuss a dramatic difference between the description of the quantum creation of an open universe using the Hartle-Hawking wave function and the tunneling wave function. Recently Hawking and Turok have found that the Hartle-Hawking wave function leads to a universe with Omega = 0.01, which is much smaller that the observed value of Omega > 0.3. Galaxies in such a universe would be about 1010810^{10^8} light years away from each other, so the universe would be practically structureless. We will argue that the Hartle-Hawking wave function does not describe the probability of the universe creation. If one uses the tunneling wave function for the description of creation of the universe, then in most inflationary models the universe should have Omega = 1, which agrees with the standard expectation that inflation makes the universe flat. The same result can be obtained in the theory of a self-reproducing inflationary universe, independently of the issue of initial conditions. However, there exist two classes of models where Omega may take any value, from Omega > 1 to Omega << 1.Comment: 23 pages, 4 figures. New materials are added. In particular, we show that boundary terms do not help to solve the problem of unacceptably small Omega in the new model proposed by Hawking and Turok in hep-th/9803156. A possibility to solve the cosmological constant problem in this model using the tunneling wave function is discusse

    Limits on the gravity wave contribution to microwave anisotropies

    Get PDF
    We present limits on the fraction of large angle microwave anisotropies which could come from tensor perturbations. We use the COBE results as well as smaller scale CMB observations, measurements of galaxy correlations, abundances of galaxy clusters, and Lyman alpha absorption cloud statistics. Our aim is to provide conservative limits on the tensor-to-scalar ratio for standard inflationary models. For power-law inflation, for example, we find T/S<0.52 at 95% confidence, with a similar constraint for phi^p potentials. However, for models with tensor amplitude unrelated to the scalar spectral index it is still currently possible to have T/S>1.Comment: 23 pages, 7 figures, accepted for publication in Phys. Rev. D. Calculations extended to blue spectral index, Fig. 6 added, discussion of results expande

    Answering a Basic Objection to Bang/Crunch Holography

    Full text link
    The current cosmic acceleration does not imply that our Universe is basically de Sitter-like: in the first part of this work we argue that, by introducing matter into *anti-de Sitter* spacetime in a natural way, one may be able to account for the acceleration just as well. However, this leads to a Big Crunch, and the Euclidean versions of Bang/Crunch cosmologies have [apparently] disconnected conformal boundaries. As Maldacena and Maoz have recently stressed, this seems to contradict the holographic principle. In the second part we argue that this "double boundary problem" is a matter not of geometry but rather of how one chooses a conformal compactification: if one chooses to compactify in an unorthodox way, then the appearance of disconnectedness can be regarded as a *coordinate effect*. With the kind of matter we have introduced here, namely a Euclidean axion, the underlying compact Euclidean manifold has an unexpectedly non-trivial topology: it is in fact one of the 75 possible underlying manifolds of flat compact four-dimensional Euclidean spaces.Comment: 29 pages, 3 figures, added references and comparison with "cyclic" cosmology, JHEP versio

    Pulsar kicks from a dark-matter sterile neutrino

    Full text link
    We show that a sterile neutrino with mass in the 1-20 keV range and a small mixing with the electron neutrino can simultaneously explain the origin of the pulsar motions and the dark matter in the universe. An asymmetric neutrino emission from a hot nascent neutron star can be the explanation of the observed pulsar velocities. In addition to the pulsar kick mechanism based on resonant neutrino transitions, we point out a new possibility: an asymmetric off-resonant emission of sterile neutrinos. The two cases correspond to different values of the masses and mixing angles. In both cases we identify the ranges of parameters consistent with the pulsar kick, as well as cosmological constraints.Comment: 5 pages, 2 figures; final version; discussion and references adde
    corecore