21 research outputs found

    Study of backspatter using high-speed video of experimental gunshots.

    Get PDF
    Backspatter is biological material that is ejected from the entry wound against the line of fire. This phenomenon was also observed in wound ballistic simulations using so called "reference cubes" (12 cm edge length, 10% gelatin, 4 °C, paint pad beneath the cover). High-speed video records from 102 experimental shots to these target models using full metal jacketed bullets in the calibers .32 auto, .38 special, 9 mm Luger and .357 Magnum were analyzed for chronology, morphological appearance and velocity of fluid ejection. Generally, a short tail splashing of surface material occurred when the bullet was penetrating the target. In 51 shots from distance (≥ 5 cm), regardless of caliber and shot range, a linear jet of fluid started in connection with the first collapse of the temporary cavity. The initial velocity of the jet was measured between 6 and 45 m/s. The jet was streaming on for about 60 to 100 ms with a stochastic deviation of ± 13° to the horizontal. Close range and contact shots showed earlier and faster (up to 330 m/s) backspatter depending on the cartridge and the gap between muzzle and target. Gaseous aerosol-like spray and cone-like spatter indicated an increasing influence of muzzle gases with decreasing shot range. Even under standardized experimental conditions, variations of backspatter were observed in near/contact shots

    Layering of stomach contents in drowning cases in post-mortem computed tomography compared to forensic autopsy.

    Get PDF
    BACKGROUND In forensic autopsy, the analysis of stomach contents is important when investigating drowning cases. Three-layering of stomach contents may be interpreted as a diagnostic hint to drowning due to swallowing of larger amounts of water or other drowning media. The authors experienced frequent discrepancies of numbers of stomach content layering in drowning cases between post-mortem computed tomography (PMCT) and autopsy in forensic casework. Therefore, the goal of this study was to compare layering of stomach contents in drowning cases between PMCT and forensic autopsy. METHODS Drowning cases (n = 55; 40 male, 15 female, mean age 45.3 years; mean amount of stomach content 223 ml) that received PMCT prior to forensic autopsy were retrospectively analyzed by a forensic pathologist and a radiologist. Number of layers of stomach content in PMCT were compared to number of layers at forensic autopsy. RESULTS In 28 of the 55 evaluated drowning cases, a discrepancy between layering of stomach contents at autopsy compared to PMCT was observed: 1 layer at autopsy (n = 28): 50% discrepancy to PMCT, 2 layers (n = 20): 45% discrepancy, and 3 layers (n = 7): 71.4% discrepancy. Sensitivity of correctly determining layering (as observed at forensic autopsy) in PMCT was 52% (positive predictive value 44.8%). Specificity was 46.6% (negative predictive value 53.8%). In a control group (n = 35) of non-drowning cases, three-layering of stomach contents was not observed. CONCLUSION Discrepancies of observed numbers of stomach content layers between PMCT and forensic autopsy are a frequent finding possibly due to stomach content sampling technique at autopsy and movement of the corpse prior to PMCT and autopsy. Three-layering in PMCT, if indeed present, may be interpreted as a hint to drowning

    Reconstruction and physical fit analysis of fragmented skeletal remains using 3D imaging and printing

    Get PDF
    Physical fit analysis (PFA) entails physically fitting fragmented evidence together to determine shared origin. PFA can be challenging to conduct with bone fragments particularly when fragile, sharp, or embedded in other materials. Three-dimensional (3D) imaging and printing techniques can circumvent these challenges. We compare two different 3D imaging techniques, micro computed tomography (μCT) and structured light scanning (SLS). By generating virtual 3D models and prints of burned human bone fragments, we test the suitability of these imaging techniques and subsequent 3D printing for PFA. We found 3D imaging and printing allowed for effective PFA without excessively handling the original fragments

    Entfärbung von Stärkehydrolysaten unter Verwendung von Ultrafiltration

    No full text
    Abweichender Titel nach Ãœbersetzung der Verfasserin/des Verfassers11

    The influence of muzzle gas on the temporary cavity.

    No full text
    Shot range, the muzzle-target distance, is a crucial parameter for forensic reconstruction of deaths by firearms. In a large number of cases, especially suicides, the forensic pathologist is confronted with contact or near-contact shots, where muzzle gases play an additional role. This study was conducted to systematically investigate the influence of muzzle gases on the temporary cavity (TC). A total of 72 shots were fired using full metal-jacketed bullets in four forensically relevant calibres from 10-, 5-, 3-, 2- and 1-cm distance and in close contact. Target model was the so-called reference cube (10% gelatine at 4 °C) with 12-cm edge length. The TC was recorded using high-speed video (HSV). Cross-sectional analysis was performed by cutting the blocks to 1-cm slices, which were evaluated by applying the polygon method. The TC of shots from 10 and 5 cm distance had a tubular form. This aspect changed depending on the cartridge with decreasing distance (≤ 3 cm) into a pear-like form, which was typical for contact shots. The cumulated heights of the TC increased with decreasing distance below 3 cm. Contact shots approximately doubled the extension of the TC compared with exclusive energy transfer. Whereas HSV documented an increasingly asymmetric profile with ballooning at the entry side, cross-sectional analysis of cracks in gelatine resulted in convex graphs with only slight asymmetry for contact shots. Additional damage in gelatine was detected for 3-cm distance or less in calibre .357 Magnum and ≤ 2 cm for .32 auto, .38 special and 9mm Luger. The increasing influence of muzzle gas pressure is detectable with decreasing shot range below 3 cm

    Sulfate limitation increases specific plasmid DNA yield and productivity in E. coli fed-batch processes

    No full text
    Abstract Plasmid DNA (pDNA) is a key biotechnological product whose importance became apparent in the last years due to its role as a raw material in the messenger ribonucleic acid (mRNA) vaccine manufacturing process. In pharmaceutical production processes, cells need to grow in the defined medium in order to guarantee the highest standards of quality and repeatability. However, often these requirements result in low product titer, productivity, and yield. In this study, we used constraint-based metabolic modeling to optimize the average volumetric productivity of pDNA production in a fed-batch process. We identified a set of 13 nutrients in the growth medium that are essential for cell growth but not for pDNA replication. When these nutrients are depleted in the medium, cell growth is stalled and pDNA production is increased, raising the specific and volumetric yield and productivity. To exploit this effect we designed a three-stage process (1. batch, 2. fed-batch with cell growth, 3. fed-batch without cell growth). The transition between stage 2 and 3 is induced by sulfate starvation. Its onset can be easily controlled via the initial concentration of sulfate in the medium. We validated the decoupling behavior of sulfate and assessed pDNA quality attributes (supercoiled pDNA content) in E. coli with lab-scale bioreactor cultivations. The results showed an increase in supercoiled pDNA to biomass yield by 33% and an increase of supercoiled pDNA volumetric productivity by 13 % upon limitation of sulfate. In conclusion, even for routinely manufactured biotechnological products such as pDNA, simple changes in the growth medium can significantly improve the yield and quality. Graphical Abstrac

    A picture is worth a thousand words--the utility of 3D visualization illustrated by a case of survived pancreatic transection

    No full text
    It is one of the most important tasks of the forensic pathologist to explain the forensically relevant medical findings to medical non-professionals. However, it is often difficult to comment on the nature and potential consequences of organ injuries in a comprehensive way to individuals with limited knowledge of anatomy and physiology. This rare case of survived pancreatic transaction after kicks to the abdomen illustrates how the application of dedicated software programs for three-dimensional reconstruction can overcome these difficulties, allowing for clear and concise visualization of complex findings
    corecore