84 research outputs found

    Fixed and flexible: coexistence of obligate and facultative migratory strategies in a freshwater fish

    Get PDF
    Migration is an important event in many animal life histories, but the degree to which individual animals participate in seasonal migrations often varies within populations. The powerful ecological and evolutionary consequences of such partial migration are now well documented, but the underlying mechanisms are still heavily debated. One potential mechanism of partial migration is between-individual variation in body condition, where animals in poor condition cannot pay the costs of migration and hence adopt a resident strategy. However, underlying intrinsic traits may overrule such environmental influence, dictating individual consistency in migratory patterns. Unfortunately, field tests of individual consistency compared to the importance of individual condition on migratory propensity are rare. Here we analyse 6 years of field data on roach migration, gathered by tagging almost 3000 individual fish and monitoring their seasonal migrations over extended periods of time. Our aims were to provide a field test of the role of condition in wild fish for migratory decisions, and also to assess individual consistency in migratory tendency. Our analyses reveal that (1) migratory strategy, in terms of migration/residency, is highly consistent within individuals over time and (2) there is a positive relationship between condition and the probability of migration, but only in individuals that adopt a migratory strategy at some point during their lives. However, life-long residents do not differ in condition to migrants, hence body condition is only a good predictor of migratory tendency in fish with migratory phenotypes and not a more general determinant of migratory tendency for the population. As resident individuals can achieve very high body condition and still remain resident, we suggest that our data provides some of the first field evidence to show that both facultative and obligate strategies can co-exist within populations of migratory animals

    Aggregating behaviour in invasive Caribbean lionfish is driven by habitat complexity

    Get PDF
    Caribbean lionfish (Pterois spp.) are considered the most heavily impacting invasive marine vertebrate ever recorded. However, current management is largely inadequate, relying on opportunistic culling by recreational SCUBA divers. Culling efficiency could be greatly improved by exploiting natural aggregations, but to date this behaviour has only been recorded anecdotally, and the drivers are unknown. We found aggregations to be common in situ, but detected no conspecific attraction through visual or olfactory cues in laboratory experiments. Aggregating individuals were on average larger, but showed no further differences in morphology or life history. However, using visual assessments and 3D modelling we show lionfish prefer broad-scale, but avoid fine-scale, habitat complexity. We therefore suggest that lionfish aggregations are coincidental based on individuals’ mutual attraction to similar reef structure to maximise hunting efficiency. Using this knowledge, artificial aggregation devices might be developed to concentrate lionfish densities and thus improve culling efficiency

    Despotism and Risk of Infanticide Influence Grizzly Bear Den-Site Selection

    Get PDF
    Given documented social dominance and intraspecific predation in bear populations, the ideal despotic distribution model and sex hypothesis of sexual segregation predict adult female grizzly bears (Ursus arctos) will avoid areas occupied by adult males to reduce risk of infanticide. Under ideal despotic distribution, juveniles should similarly avoid adult males to reduce predation risk. Den-site selection and use is an important component of grizzly bear ecology and may be influenced by multiple factors, including risk from conspecifics. To test the role of predation risk and the sex hypothesis of sexual segregation, we compared adult female (n = 142), adult male (n = 36), and juvenile (n = 35) den locations in Denali National Park and Preserve, Alaska, USA. We measured elevation, aspect, slope, and dominant land cover for each den site, and used maximum entropy modeling to determine which variables best predicted den sites. We identified the global model as the best-fitting model for adult female (area under curve (AUC) = 0.926) and elevation as the best predictive variable for adult male (AUC = 0.880) den sites. The model containing land cover and elevation best-predicted juvenile (AUC = 0.841) den sites. Adult females spatially segregated from adult males, with dens characterized by higher elevations ( = 1,412 m, SE = 52) and steeper slopes ( = 21.9°, SE = 1.1) than adult male (elevation:  = 1,209 m, SE = 76; slope:  = 15.6°, SE = 1.9) den sites. Juveniles used a broad range of landscape attributes but did not avoid adult male denning areas. Observed spatial segregation by adult females supports the sex hypothesis of sexual segregation and we suggest is a mechanism to reduce risk of infanticide. Den site selection of adult males is likely related to distribution of food resources during spring

    Effects of predator exposure on baseline and stress‐induced glucocorticoid hormone concentrations in pumpkinseed Lepomis gibbosus

    Get PDF
    We compared baseline and maximal cortisol concentrations between predator exposure and prey blood samples in pumpkinseed Lepomis gibbosus, captured using a standardised fishing event underneath osprey Pandion haliaetus nests and away from osprey nests. We did not detect differences in cortisol or glucose between sites. These findings suggest that predictable sources of predation risk may not confer stress-related costs in teleosts

    Interactive effects of pesticide exposure and habitat structure on behavior and predation of a marine larval fish

    Full text link
    Coastal development has generated multiple stressors in marine and estuarine ecosystems, including habitat degradation and pollutant exposure, but the effects of these stressors on the ecology of fishes remain poorly understood. We studied the separate and combined effects of an acute 4 h sublethal exposure of the pyrethroid pesticide esfenvalerate and structural habitat complexity on behavior and predation risk of larval topsmelt (Atherinops affinis). Larvae were exposed to four nominal esfenvalerate concentrations (control, 0.12, 0.59, 1.18 μg/L), before placement into 12 L mesocosms with a three-spine stickleback (Gasterosteus aculeatus) predator. Five treatments of artificial eelgrass included a (1) uniform and (2) patchy distribution of eelgrass at a low density (500 shoots per m(2)), a (3) uniform and (4) patchy distribution of eelgrass at a high density (1,000 shoots per m(2)), and (5) the absence of eelgrass. The capture success of predators and aggregative behavior of prey were observed in each mesocosm for 10 min of each trial, and mortality of prey was recorded after 60 min. Exposure to esfenvalerate increased the proportion of larvae with swimming abnormalities. Surprisingly, prey mortality did not increase linearly with pesticide exposure but increased with habitat structure (density of eelgrass), which may have been a consequence of compensating predator behavior. The degree of prey aggregation decreased with both habitat structure and pesticide exposure, suggesting that anti-predator behaviors by prey may have been hampered by the interactive effects of both of these factors
    corecore